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ABSTRACT

Two instrumented payloads were designed, constructed, and flown
aboard two Aerobee rockets launched from Wallops Island, Virginia. The
first flight was at local noon and the second shot was two hours before
local midnight. Three magnetic antennas (loops) were flown: one approx-
imately vertical and one horizontal for measurements in the frequency
range 0.2 to 100 kc, and one vertical for measurements in the frequency
range 1250 to 1600 kc. One horizontal electric dipole was flown for
measurements on the NSS (22.3 kc) Navy transmitter and for measurements
of the complex antenna terminal impedance. On one flight, a low-frequency

(=~ 100 cps) swept-bias conductance probe was flown.

Narrow-band sweeping receivers covered the frequency range 0.2 to
100 kc and 1250 to 1600 kc, giving contiguous spectral data on man-made
as well as naturally occurring signals. Profiles oﬁ attenuation as a
function of altitude were obtained on many signals, man-made as well as
natural. Interesting natural noise phenomena were observed. A broad-
band receiver (0.3 to 12.5 kc) obtained data on many whistler-type signals,

including a new type called the subprotonospheric whistler.

The sweeping receivers covering the range 0.2 to 100 kc and the
broadband receiver constituted the essential components of the experiment
flown by Stanford University and Stanford Research Institute on the NASA
EOGO satellite. The rocket flights were a successful test of the engi-

neering and scientific design of the satellite experiment.

The complex (resistive and reactive components) impedance of an
electric dipole was measured at 1.54 and 120 kc. Data were obtained at
nighttime only because of equipment failure on ihe dayiiwme L£iight.
Detailed impedance data were obtained through a very thin sporadic-E
ionization layer and at the lower edge of the F layer. Sensitivity to

3
10” elec/cc was observed.
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Measurements of both phase and amplitude were made at 22.3 kc (NSS)

using the vertical and horizontal loop antennas and the horizontal dipole.

Amplitude of the electric and magnetic field strengths {and therefore
an indication of power density) were obtained as well as data on wave
normal direction and polarization. The phase measurement produced an
integrated electron density profile that matched very well with ionosonde
data and in form with the conductance probe data, and extended the mea-

surement of electron density down to approximately 100 elec/cc.

Dynamic conductance as a function of dc bias was obtained at 112 cps
on a small probe. By observing conductance as a function of dc bias,
the electron temperature and rocket potential were measured. An estimate
of ion drift velocity may be made from the observations, and lends sup-

port to the hypothesis that a static electric field exists in the mid-

latitude F region,

iv
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1, INTRODUCTION

The experiments described in this report have been designed and
performed with the fundamental purpose of exploring the effects of the
lower ionosphere on VLF waves. Since there had been few previous mea-
surements at VLF in the ionosphere, the intent of this project was to
perform a broad survey of the many types of observations that could be
made on sounding rockets, At the same time, these flights provided a
perfect opportunity to test the instrumentation designed by SRI for the
Stanford-SRI VLF experiment on the EOGO satellites. As anticipated,
these flights of EOGO-type instruments provided scientifically valuable
data, as well as verifying that correct assumptions had been made in the
design of the EOGO instruments, The records also proved valuable in
developing data-reduction methods for the EOGO experiment., The first
EOGO (0OGO-1) experiment was successfully launched in September 1964 but

no results will be reported here.

This repoft summarizes the combined results of the various instru-
ments flown, presents analyses of some of the phenomena observed, and
discusses the potential future use of the existing data and development

of additional experiments of a similar nature.

Since various independent experiments were flown on the two rockets
fired during this investigation, details of the instrumentation and
results of each experiment are reported in separate sections. The wealth
of data resulting from the successful flight of the many experiments
flown has precluded a complete analysis, at this time, of all pertinent
observations., It has therefore been our intent to present and discuss
as large a volume of reduced data as practical, to allow the reader to
draw his own conclusions on phenomena that have not yet been developed

in detail.



2, OBJECTIVES

In support of the ultimate purpose discussed in Sec. 1, the follow-

ing objectives were defined for this project:

Perform a survey of VLF noise observed in the ionosphere. This

survey is intended to outline the general level of natural noise to be
found in the D, E, and lower F regions over the entire range of fre-
quencies from 200 cps to 100 kec, plus a 1250 to 1600-kc band, which
includes the local electron gyrofrequency. Comparison with noise levels
observed below the ionosphere, and with other ground measurements, allow
a check on the anticipated values of reflection and absorption losses.
Even more important is the opportunity to record phenomena that are not
normally observed on the ground but should exist in the ionosphere,

such as daytime whistlers. Also, for the purpose of designing future
rocket and satellite experiments, knowing the amplitude and frequency

ranges to be expected is invaluable,

F{ight test the EOGO satellite VLF experiment. The Aerobee flights

were not intended as an environmental test of EOGO instrumentation so
much as a preview of results to be obtained from the EOGO experiment,
If the rocket flights had shown any serious flaws in the EOGO design
philosophy, the EOGO instruments would have been corrected before the
EOGO was sent aloft., Although no such difficulties were found, the
results of the Aerobee experiments were used extensively to develop

data reduction methods, and to plan experiments to be performed with EOGO,

Investigate VLF propagation in the ionosphere, and through its

lower boundary region, Theoretical treatment of these problems is com-

plicated not only by extremely involved mathematics, but also by rela-
tively poor knowledge of the D and E regions, which are highly variable
and difficult to explore experimentally. Since ihese regious exert a
strong influence on VLF propagation, however, their composition can be

largely determined from the propagation data., In this project, several




experiments have been performed for propagation studies, which are prov-
ing very useful in attacking the composition problem as well. The more
immediate goal, however, is to obtain direct evidence on the nature of
absorption, refraction, reflection, and polarization change in the D
and E regions, and to determine the nature and depth of penetration of

downcoming whistler-mode signals.

Investigate the effect of the ionosphere on VLF antennas. Although

substantial theoretical progress has been made in the last few years,

the problem of the complex impedance of an electric dipole surrounded by
an ion sheath in a gyrotropic medium is still far from solved. There-
fore, the impedance experiments performed on this project have been
directed toward a survey of the predominant effects, in order to get

some hints at the best ways to proceed in breaking down the problem,

Once the effects of the medium are understood well enough, it is expected
that VLF impedance probes will prove their value in exploring regions of
low ionization. At a less sophisticated level, the impedance data ob-
tained will be of direct engineering value in designing antenna matching

systems for future experiments.

Evaluate potential improvements in instrumentation. As more is

learned about the physics being investigated, better or more precise
methods of measurement will suggest themselves, or completely new ap-
proaches may be seen. These, together with engineering improvements
that could be made on existing instrument designs, will be discussed as

appropriate in the sections which follow,




3. GENERAL EXPERIMENT AND FLIGHT OPERATIONS

3.1 Aerobee 4.58 Ul

The design of the instrumentation for Aerobee 4.58 UI began
1 July 1961 and continued at a normal level of effort until 31 December
1961; at which time work was essentially reduced to zero in order that
personnel might be utilized to develop an experiment to be orbited on
NASA's EOGO satellite. During this six-month period (1 July 1961 to
31 December 1961), the basic design of the Aerobee experiment was
established and most critical breadboard testing was carried out. Pro-

curement of long-lead-time items was also accomplished,

Work on the Aerobee 4.58 Ul payload resumed at maximum level on
1 October 1962 and continued up to an expected launch date of
22 January 1963, During January the payload was completed and taken
to Goddard Space Flight Center (GSFC) for enviroumental testing. Due
to launcher repairs, the launch was postponed to 5 February 1963. On
29 January the firing date was postponed indefinitely because of pre-
vious Aerobee rocket failures. At this time the payload had already
passed all tests and was in the Aerobee launch tower preparatory area
ready to be integrated with the rocket motor. The payload was partially
disassembled and stored in the preparatory area pending further Aerobee

scheduling developments.

Definite causes of the failures of previous Aerobee rockets were
not established in all cases; however, two rockets had payloads that
were lightweight, long length, and utilized a fiberglass nosecone in
place of the more usual aluminum nosecone. Since the Aerobee 4.58 Ul
payload was lightweight and utilized a fiberglass nosecone, it was
decided that additional weight should be added, even though the antic-
ipated altitude (= 300 km) would not be reached and a reduced aliitiude
(~ 225 km) would result. For maximum effectiveness the weight should

be placed as near the forward tip as possible. Increasing the stiffness



of the fiberglass nosecone to perform more nearly like an aluminum nose-
cone was also desirable. The delayed schedule (2 April 1963) allowed
time to design and construct a support structure inside the nosecone

to support lead weight (30 1lb) very near the tip of the rocket and to
support the fiberglass nosecone from the inside. The new support struc-
ture, when buffered against the fiberglass nosecone with hard rubber

bushings, proved to be as stiff as an aluminum nosecone.

The new support structure was fabricated at SRI and assembled with
the payload at GSFC. The payload had been returned to GSFC from Wallops
Island. The payload was then subjected again to vibration tests and to
a bending test to test the new structure, and satisfactory results were
obtained., Electrical integration tests were performed at GSFC, and the
payload was then returned to Wallops Island for integration with the

rocket and for a scheduled launch on 2 April 1963.

Due to range-scheduling difficulties, the firing date was delayed
to 3 April 1963, on which day the firing took place at 1646:22.32Z
(1146:22,32 EST or LMT),

Before launch, the ground receiver had been installed in the
blockhouse for recording ground data for comparison with the rocket data
and for real-time comparison of the phase of the NSS signal received on
the ground with the phase of a reference oscillator flown in the rocket.
Special key-down transmissions from NSS during the rocket flight had
been arranged through the offices of Chief of Naval Operations, Iono-
sonde data were obtained by the Wallops Island ionosonde station. The

VLF ground station at Greenbank, West Virginia was also operating.

A tense moment occurred when, instead of the rocket ignition occur-
ring at X minus zero time when the ''fire' switch is actuated, the ignition
took place at X minus eight seconds when the "arm’ switch was actuated.
Fortunately, recorders had already been turned on and the rocket payload
had been switched to internal batteries. What might have been a disaster

had no effect on the experiment performance,




The rocket performance was excellent, resulting in an extremely

stable flight to an altitude slightly higher than estimated.

With the exception of the electric dipole antenna, all experimental
systems performed satisfactorily, Examination of the data indicated
that the electric dipole antenna, consisting of two strips of copper
attached to the fiberglass nosecone, was torn loose shortly before
rocket burnout., Because of this failure, no impedance data on the
electric dipole were obtained, and the phase and amplitude of the

electric field of the NSS (22.3 kc) transmission were uncalibrated.

First inspection of the data took place prior to the Aerobee 4.59 UI
flight in order to determine if changes in the experiment were desirable

for Aerobee 4,59 UI.

3.2 Aerobee 4,59 Ul

The instrumentation for Aerobee 4.59 UI was completed during the

second quarter of 1963 in preparation for a launch schedule of 9 July 1963,

Since an excellent daytime sample of data was obtained by Aerobee
4.58 UI, Aerobee 4,59 Ul was scheduled for nighttime., The sun-earth
sensor used on Aerobee 4,58 UI was replaced by a moon sensor on Aerobee
4.59 UI, Only moderate temperature changes were experienced on Aerobee
4.58 UI; therefore, the temperature monitor was replaced by an additional
experiment, a conductance probe. This conductance probe was added to
provide data on electron temperature and plasma potential for correla-
tion with data from the impedance probe and the NSS phase-tracking
receiver. Two lateral accelerometers, provided and installed by NASA,
were mounted on the rocket sustainer near the booster to observe lateral
accelerations produced by the booster. An acceleration-actuated timer
was provided by NASA to disconnect the accelerometer data from the
telemetry chunnels after 15 seconds and counect the conductance
data to these same channels. Ground command backup of the G-actuated

timer was provided by the DRW-13 command receiver.

The two strips of copper which comprised the electric dipole antenna
were more securely attached on Aerobee 4,59 UI with screws as well as

adhesive to prevent a reoccurrence of the Aerobee 4 .58 UI failure.
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The loop antennas on Aerobee 4.59 UI were shielded (no shields were
used on Aerobee 4.58 UIl) to reduce their sensitivity to electric fields.
To facilitate the shielding, the number of turns on each loop was re-
duced and the antenna matching transformers changed to accommodate the

new antenna impedances,

Magnetic shields of high permeability material were used to enclose

the VCO's in the telemetry system to reduce their radiated interference.

The Aerobee 4.59 Ul payload, identical to Aerobee 4.58 Ul except as
described above, was taken to GSFC for environmental testing and telemetry
checks. Satisfactory performance was obtained in all respects. The
payload was then taken to Wallops Island for integration with the

rocket, further telemetry checks, and firing.

As in the Aerobee 4,58 Ul operation, a ground receiver was installed
in the blockhouse. Special key-down transmissions from NSS were again
arranged through the offices of Chief of Naval Operations. lonosonde
data at Wallops Island were obtained and the VLF ground station at

Greenbank, West Virginia was operating.

The rocket was fired at night on 10 July 1963 at 0246:00.0 z
(2246 EDT or 2146 LMT on 9 July). All the experiment and rocket systems

functioned normally, resulting in a completely successful experiment.




4., INSTRUMENTATION

The experiments flown on Aerobee 4.58 UI and Aerobee 4,59 UI are

given in Table 4.1.

Table 4.1

EXPERIMENTS ON AEROBEE 4.58 UI AND AEROBEE 4 .59 UI

Experiments on Aerobee 4,58 UL

Experiments on Aerobee 4.59 Ul

Band 1 Receiver (0.2-1.6 kc)
Band 2 Receiver (1.6-12.5 kc)
Band 3 Receiver (12,5-100 kec)
Band 4 Receiver (1.25-1.6 Mc)
Broadband Receiver (0.2-12.5 kc)
NSS Receiver (22,3 kc)

Impedance Probe (1.54 and 120 kc)
Magnetometer (spin coil)
Chamber Pressure

Sun-Earth Aspect

Temperature and Voltage

Linear Accelerometer

Band 1 Receiver (0.2-1,6 kc)
Band 2 Receiver (1.6-12.5 kc)
Band 3 Receiver (12.5-100 kc)
Band 4 Receiver (1.,25-1.6 Mc)
Broadband Receiver (0.2-12.5 kc)
NSS Receiver (22,3 kc)

Impedance Probe (1.54 and 120 kc)
Magnetometer (spin coil)
Chamber Pressure

Moon Aspect

Conductance Probe

Lateral Accelerometer
Lateral Accelerometer

A major portion of the instrumentation was duplicated on Aerobee

4.58 UI and Aerobee 4.59 Ul; the common portions will be described first,

then the differences.

Refer to the block diagrams in Figs, 4.1 and 4.2 for the following

discussion.,

The output of the vertical low-frequency loop is applied to the

low-frequency preamplifier and to the magnetometer. The magnetometer

amplifies the signal produced by the rocket spin, equalizes the frequency

response for constant output regardless of rocket spin rate, and applies
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this output to a standard IRIG voltage-controlled oscillator (VCO). The
output of the low-frequency preamplifier is used for the Band 1, 2, and
3 receivers and the NSS receiver. The outputs of the Band 1, 2, and

3 receivers are applied to IRIG VCO's. Following an RF filter in Band 2,
a signal is obtained to apply to the broadband receiver input. Two out-
puts are obtained from the broadband receiver: (1) the amplitude
(envelope) of the signal in the total band; and (2) a spectrum of the
signals in the band, derived by clipping the signals, The amplitude
data are applied directly to an IRIG VCO; however, the broadband spec-
trum is translated to a frequency range 67.1 to 79.4 kc by using a

66 .9-kc local oscillator and then applied directly to the telemetry
baseband. The 66.9~kc signal, used also as a phase reference for the

NSS receiver, is also applied to the telemetry baseband.

The NSS receiver is actually three receivers operating on signals
from the low-frequency vertical loop, the horizontal loop, and the
electric antenna. The output from each of these receivers is commutated
into a common logarithmic amplifier, amplitude detector, and phase de-
tector, Alternate samples of amplitude and phase from each receiver in

succession are applied to an IRIG VCO by means of another commutator,

The impedance probe measures the complex impedance of the electric
antenna at 1,54 and 120 kc. Two oscillators operating at 1.54 and
120 kc supply signals, which are curreant injected into the antenna and
used as a reference for measuring the phase of the resulting voltage.
Common amplitude and phase detectors are used for both signals alternately
and the detected amplitude and phase are applied alternately to a single

IRIG VCO by a commutator,

An oscillator (224 cps on Aerobee 4,58 UI and 112 cps on Aerobee
4.59 Ul) is used to provide signals fbr the commutators used in the NSS
receiver and impedance probe. This same signal is used on Aerobee 4.58 Ul
to operate the scalers which step the sweep oscillator used as a local
osciliator for Bands 1, 2, aud 3. A separatc cscillator at 515 cps is
used on Aerobee 4,59 UL. The sweep oscillator is also used to sweep
the sweeping oscillator for Band 4 by using first a frequency-to-voltage

converter (discriminator) and then applying this voltage to a VCO operating
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at a frequency appropriate for Band 4. The Band 4 receiver thereby
sweeps (steps) over its frequency range in syanchronism with Bands 1, 2,

and 3.

A calibrator generates signals in each of the receiver frequency
bands; these signals are applied periodically during the flight. The
calibrator also operates a relay in the electric antenna preamplifier
to connect a known impedance in place of the antenna, In addition,
signals (22.3 kc) are applied to the common portions of the NSS receivers

whenever the calibrator operates.

Rocket sustainer chamber pressure signal is obtained by a pressure
sensor mounted in the combustion chamber and applied directly to an

IRIG VCO,

On Aerobee 4.58 UI, a sun-earth aspect sensor provides signals in
turn to electronics for amplification and to an IRIG VCO. The data are
in the form of received intensity of the sun's radiation, which is
related to the angle between the rocket axis and the sun direction, and
to times when the earth sensor is observing either the earth or space,

which indicates angular displacement of the rocket about its axis.

On Aerobee 4.59 UL, a moon sensor provides signals in turn to elec-
tronics for amplification and to an IRIG VCO., The moon sensor consists
of a sensing device mounted behind a mask that is perforated with un-
ambiguously coded slots to give a direct indication of the angle between
the sensor direction and the moon direction., The conic half-angle between

the moon direction and the rocket axis is then known.

On Aerobee 4.58 UI, the temperature is measured at two locations on
the fiberglass nosecone and one place in the instrumentation section,
A voltage measurement is made to determine the status of the 20-volt

regulator. This data is commutated onto a single IRIG VCO,

On Aerobee 4.58 UI, a linear accelerometer measures longitudinal

acceleration. The output is applied directly to an IRIG VCO.

On Aerobee 4,59 UL, a pair of orthogonal accelerometers measure

lateral acceleration near the combustion chamber of the sustainer. These
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data are applied to two IRIG VCO's during the first 15 sec of flight

and then are disconnected by a 15-sec G-actuated timer. The two IRIG
channels are then available for data from the conductance probe. The
conductance probe measures the conductance of a small antenna (probe)

at 112 cps. The voltage (dc) is varied on the probe to obtain variation
of conductance with biasing potential. The conductance and bias data

are then applied to two VCO's as indicated above.

The data from all VCO's as well as the broadband data are applied
to an FM transmitter operating at 240.20 Mc and transmitting 0.5 w via

the Fin 1 antenna,

A battery consisting of 21 l-amp-hour, rechargeable, silver-zinc
cells supplies power to all instrumentation except the DRW-13 cutoff
receiver, The 28-v regulator supplies power to the telemetry trans-
mitter and VCO's and to a 20-v subregulator. The 20-v subregulator sup-

plies all power to the experiment instrumentation.

The DRW-13 receiver has its own battery and utilizes the Fin III1
antenna, On Aerobee 4.58 Ul, the DRW-13 was used strictly for cutoff
purposes; on Aerobee 4.59 UI, the DRW-13 was also used for command back-

up of the G-actuated timer and for resetting the calibration sequence.
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5. MECHANICAL DESCRIPTION OF PAYLOAD
In the following discussion, reference is made to Fig. 5.1.

Although it was desirable to have receiving antennas of large size
and to isolate the various antennas from one another, the experiment
instrumentation was designed to fit substantially inside the profile of
a standard Aerobee nosecone and 15-inch payload extension. This design
criterion was established to eliminate the complexity and possible unre-
liability of protruding or deployed apparatus, which would have been
necessary in order to increase the size and isolation of the various
antennas. A dielectric nosecone was employed to prevent the antennas
from being electrically shielded by the nosecone. An alternative would
have been to eject an aluminum nosecone at high altitude; however, this
would have prevented satisfactory operation in the launch tower (for
final operation tests) and at low altitudes where background data were

desirable.

The loop antennas were placed on a phenolic structure inside the
nosecone. The two orthogonal loops with vertical planes were designed
to have the maximum possible area and had a shape very nearly that of
the vertical cross-section of the nosecone. A third horizontal loop
was wound around the vertical loops in a circle very nearly equal in
area to the horizontal cross-section of the nosecone at its base. An
electric antenna consisting of two l-inch-wide strips of thin brass was
attached to the outside of the nosecone. Phenolic discs, which acted
as cross supports for the vertical loop antenna structure were also used

to support the preamplifiers associated with the various antennas.

All of the remaining electronics, including power supply, batteries,
command receiver, and telemetry system, were located in the 15-inch exten-
sion. This compartment was electrically closed to prevent coupling of

electromagnetic interference intc the antennas

MTur~
c 2w S

A
. w Cp

in the extension: one for mounting an aspect sensor and one for an

inspection port. The entire payload was pressurized during flight.
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FIG. 5.1 AEROBEE 4.59 Ul PAYLOAD
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On Aerobee 4.59 UI, a protrusion from the nosecone was made. This
was a probe consisting of a pointed aluminum 3/8—inch rod about 24 inches
long with an insulated concentric aluminum sleeve 1/2 inch in diameter
enclosing the bottom half of the rod. This probe was mounted in a modi-
fied stainless steel nosecone tip. The size, shape, and rigidity of the

probe were designed to have least aerodynamic effects.

Telemetry and command receiver antennas were standard Aerobee fin
antennas and were connected to the payload with cables routed through
the sustainer regulator compartment and then through the sustainer

shrouds.

At the time that the payload for Aerobee 4.58 UI was ready for
launch, two Aerobee rockets with similar payload weight distribution
and employing dielectric nosecones sustained catastrophic mechanical
failures during the early stages of their flight (see Sec. 3). Investi-
gation of the failures indicated that it was reasonable to assume that
the payload configuration contributed substantially to the failures.
It was therefore recommended that payload configuration of Aerobee 4.58 UI
and Aerobee 4,59 UI be modified. As a result, two significant changes in
payload configuration were made:
(1) A support structure consisting of four l-inch aluminum
bars in the form of two orthogonal A-frames was placed
inside the nosecone and buffered against the nosecone
to provide support for the nosecone to make the dielec-

tric nosecone essentially as rigid as an aluminum one;
and

(2) This same support structure was used to support thirty
pounds of lead weight very near to the nosecone tip,
which substantially changed the location of the center
of gravity of the payload.
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6. GROUND SUPPORT EQUIPMENT

6.1 Checkout Sets

To operate the payload during prelaunch tests, two checkout sets
were designed and constructed, one power control unit and one signal
monitor unit. These were built into portable cases which could be easily

hand carried to desired testing facilities.

The power control unit was designed to operate directly into an
internal connector on the payload or through the umbilical cable, which
was brought into the blockhouse at Wallops Island. This unit had the
following capabilities:

(1) Supply and monitor external power, with or without the payload

batteries connected;

(2) Charge the payload batteries, with or without the payload
operating;

(3) Operate and monitor the payload latching relay, which switched
between internal and external power;

(4) Monitor the 20-volt regulator and the instrumentation
temperature;

(5) Supply power to a payload heater (on Aerobee 4.58 UI, deleted

on Aerobee 4 .59 UI).

The signal monitor unit was used to monitor the telemetry data by
observing the composite modulation being applied to the transmitter, by
observing the output of the transmitter, or by observing the output of
a telemetry receiver receiving the transmitted data. In each case the
appropriate IRIG VCO signal was filtered from the remaining data, dis-
criminated, and appropriately scaled to represent the data being applied
to the VCO's in the payload. For monitoring the transmitter, a 50-ohm
load was applied and the output power was monitored. An external oscil-

lator input was provided to calibrate the discriminator and output

The signal monitor unit could also be connected to an internal moni-

toring connector, which brought out points for monitoring various critical
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data before the data were applied to the telemetry system. These moni-

toring points were wired to test points on the signal monitor unit.

6.2 Ground Receiver

In order to compare the NSS and broadband signals received in the
rocket with these same signals received on the ground, a ground receiver
was designed and constructed for operation at Wallops Island during

launch.

A short whip and broadband (0.2-100 ke) preamplifier were located
near the blockhouse; the preamplifier output was connected to the receiver
in the blockhouse with a coaxial cable. Several outputs were available
from the receiver for recording on chart and magnetic tape. The ground
broadband data were recorded on tape for direct comparison with the
broadband data from the rocket. The broadband data from the rocket
(in the form of translated data, as described in the section on rocket
broadband receiver) were recorded on magnetic tape by recording the te-
lemetry receiver base-band signal. To obtain rocket broadband data with
a minimum of interference from the VCO channels and a minimum of tape
recorder noise contamination and to obtain the signals in the original
frequency spectrum, the ground receiver was designed to retranslate the
broadband data from the 70.1-79.4 kc range back to the 0.2-12.5 kc range.
These data were then recorded on a tape recorder channel. The retransla-
tion was performed by using the oscillator signal (66.9 kec) transmitted
from the rocket; thereby preserving the phase of the broadband data
(except for telemetry propagation delay). The phase of the 66.9-kc
oscillator signal from the rocket was compared with the phase of the NSS
signal received on the ground and the output of the phase comparator was
recorded on strip chart. In this way, except for telemetry propagation
delay, the relative phase of the NSS signal received in the rocket with

respect to that received on the ground could be determined.
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7. DATA RECORDING AND DATA REDUCTION
7.1 General

All data from the rocket flights were recorded by the telemetry
stations at Wallops Island. Both the blockhouse and the main-base telem-
etry stations participated in receiving and recording the data transmitted
from the rocket via the single FM/FM transmitter aboard., Excellent telem-
etry signals were obtained for the entire flight on both Aerobee 4.58 UI
and Aerobee 4.59 UI, providing high-quality recordings in each case.

The data were recorded on magnetic tape and on oscillograph chart paper.,
The magnetic tape recordings included the output from a ground receiver
at the blockhouse on Aerobee 4,58 UI and from ground receivers at both

the blockhouse and the main base on Aerobee 4,59 UI. The phase comparison
between the reference oscillator in the rocket payload and the NSS signal
received on the ground at the blockhouse was also recorded on the chart
record, The broadband spectral data from the rocket as well as from the
ground receiver were recorded only on magnetic tape because of its large
bandwidth. The oscillograph recordings also included lift-off signal,
timing signals, and telemetry receiver AGC signal. Samples of the oscil-
lograph recordings are shown in Figs. 7.1 and 7.2. Due to the relatively
short duration of each flight (~ 7 min), the majority of the data were
hand-scaled directly from these oscillograph recordings. The broadband
spectral data and the spectral data obtained by the sweeping receivers

required processing as described in Sec. 7.4 and 7.5.

7.2 Radar and Photography

Rocket flight trajectory data on both flights were obtained by skin-

4 1
v

E -l R e e o Ml ~ - .y - T e o ]
iavn 1L audl , 111c

¢ in the form of plot-board curves as well as
tabulated data. Slant range, azimuth, and elevation angle were obtained.
Ground range, ground track, and altitude were hand-calculated from these

data.
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The initial portions of the rocket flights were photographed with
high-speed movie cameras by Wallops Island personnel. These photographs

gave an indication of initial rocket performance.
7.3 Ionosonde

Ionosonde data were taken by the ionosonde station at Wallops Island.
Ionosonde records were taken at 15-minute intervals for two hours before
and after the flight and at 30-second intervals during the flight. These
ionosonde recordings, in the form of photographs, were scaled to give
critical frequency versus altitude, thus providing an electron density

profile.

7.4 Broadband Spectrum Analysis

The broadband spectrum from the broadband receivers in the rocket
and on the ground were recorded on magnetic tape, and a spectrum analysis
was performed with a spectrum analyzer (Rayspan) at Stanford University.
Several samples of spectrum produced by the Rayspan are shown in Sec. 8,
The Rayspan consists of a set of narrow-band filters equally spaced in
frequency (comb filter), a cathode ray tube intensity-modulated display
of the output of each filter, and a camera for recording the display.

The Rayspan spectrum analysis covered the frequency range of 0 to 20 kc.

7.5 Panoramic Data Display, Sweeping Receivers

Because of the large amount of data obtained from the sweeping
receivers a method was sought which would allow viewing of the data in
a short time. All four of the sweeping receivers' outputs, which appeared
as consecutive sweeps on one chart recording, were photographed on motion
picture film. On Aerobee 4.58UI each receiver sweep was photographed
on two consecutive frames of film to reduce flicker when the film was
projected at low speeds. On Aerobee 4.59 Ul each receiver sweep was photo-
graphed on two consecutive frames; however, each frame contained two
sweeps and the photograph of an individual sweep would first appear in
the right half of the frame and then on the left half of the frame. The
sweep appearing on the left half of the frame had a frequency- and

amplitude-scale overlay. The sweep on the right appeared uncluttered.
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By operating the projector at 16 frames per second, the receiver data
could be displayed in one eighth the time in which it was received by
the rocket. By varying the projector speed, interesting features of the
data could be examined for longer times. In this way the data could be
very conveniently displayed in a form of panoramic spectrum display that

could be observed at variable rates.

A similar technique is to be used to scan the sweeping receiver data
gathered by the EOGO satellite. Each bit of digital data obtained from
EOGO will be displayed on a CRT by a specialized computer in a form to
reconstruct the spectral display. This CRT may be viewed directly or
photographed by a step-frame motion picture camera., This film may be
viewed as described above and the time contraction of the display will
be even more pronounced. It is expected that an entire year's data may
be displayed in approximately one day of continuous film viewing. The
EOGO display will also contain other data helpful for data analysis such

as time, satellite orbit data, geophysical data, etc.
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8. FLIGHT TRAJECTORY AND DISCUSSION
8.1 Trajectory

The altitude and ground track for each flight were calculated from
the data obtained from the tracking radar data (slant range azimuth, and
elevation angle), The calculated trajectories are shown in Figs. 8.1 and
8.2. Note that the altitude is not corrected for curvature of the earth;
instead the altitude shown is with respect to a plane tangent to the
earth at the launcher site. The correction for true altitude is minor,

less than 1 km at 100-km range.

Figure 8.3 shows an azimuth projection about the launcher giving

directions of trajectories and other useful directions.
8.2 Aspect
8.2.1 General

The aspect of the rocket spin axis was determined from data
obtained from the spin-coil magnetometer and sun-earth sensor on Aerobee
4.58 UL and the spin-coil magnetometer and moon sensor on Aerobee 4.59 UI.

The results are given in Sec, 8.2.4,

8.2.2 Sun-Earth Sensor, Aerobee 4.58 UI

The sun-earth sensor flown on Aerobee 4,58 Ul was supplied by
NASA. This sensor was an analog device that gave an output proportional
to the intensity of the solar radiation. With respect to the output
given when the radiation is normal to the sensor, the output decreases
as the cosine of the angle between the radiation and the normal to the
sensor, It is difficult to obtain a calibration source that is repre-
sentative of suniight at the rockei aiiiiudes; however, in principle at
least, a calibration point can be obtained during the powered portion of
the flight by assuming the spin axis to be aligned with the trajectory
direction. The sensor is best suited to solar directions near the normal
to the sensor. Unfortunately, on Aerobee 4,58 UI the angle between the

solar direction and the normal to the sensor was approximately 75 degrees.
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This gave very low-level output signals, which were not considered
accurate. The sun sensor did, however, give the times when the sensor
was pointing (in azimuth) at the sun, thereby giving data concerning the
spin angular displacement., This data was used to resolve the ambiguity

in the magnetometer data.

The earth sensor on the unit is used to resolve ambiguities in
the sun sensor; however, due to the near-vertical flight trajectory, the
earth was not in the field of view until very near the end of the flight

and the sensor proved not to be particularly useful.

8.2.3 Moon Sensor Aerobee 4.59 UI

During the night shot (Aerobee 4.59 UI), attitude information
was provided by a spin-coil magnetometer (see Sec. 8.2.4) and a moon
sensor., Since the photomultiplier sensor available from NASA was too
big to fit in the electronics section of the payload without a complete
redesign, and putting it in the plastic nosecone was undesirable for
both structural and electrical interference reasons, a small all-transistor

sensor was developed and flown.

In principle, the sensor used was a simple shadow-mask mounted
in front of a phototransistor. As the rocket spun on its axis, the moon-
light pattern penetrating the mask scanned across the phototransistor,
generating a distinct sequence of pulses for each 2 degrees of elevation
angle. The pulse sequences used formed a six-bit Gray code, preceded
and followed by '"on" bits. The entire eight-bit sequence occupied 90
degrees of spin angular displacement, or 0.1 second at the nominal spin
rate of 2.5 rps. The system response was adequate (100 cps) for spin

rates of at least 6 rps, well above the maximum expected.

The construction of the instrument was kept simple by using a
wide-angle phototransistor without lens, placed 2.54 cm behind the mask,
The mask itself was a photographic negative cemented to the back of a
6 cm X 10 cm Pyrex window 1 cm thick, which was mounted nearly flush
with the rocket skin in a doubler contoured to the skin inside radius.
A boxlike aluminum cover supported the phototransistor and enclosed it

over the mask. The remaining circuitry was mounted on the back of the
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cover and protected by a dust cover, (onnection to +20 v power (at about

3 ma) and a telemetry VCO completed the system.

In operation, direct moonlight could fall on the sensor within
a sector 90 degrees wide in azimuth, and from -30 to +60 in degrees ele-
vation, where +90 degrees is the direction of the nose. Since no commer-
cial photosensors were found that combined the necessary speed, sensitivity,
and wide angle, they were constructed by cutting the tops off of type
2N929 silicon transistors selected for low leakage (< 10_11 amp) and high
beta. The exposed base region was less than 0.4 mm in diameter, giving
theoretical resolution better than 1 degree. 1In practice, the transition
from one 2 degree band of elevation to the next could be determined to

less than 0.5 degree, the apparent diameter of the moon.

The electronic circuitry consisted of a simple seven-stage tran-
sistor amplifier, including field-effect input stage, designed to respond
to frequencies from about 0.5 to 200 cps and to clip the output to a con-
stant level (0 to +5 v) without disturbing bias levels. This arrangement,
which incorporated nonlinear feedback, resulted in dynamic range suffi-
cient to allow the same device to be used as a moon sensor Or sun sensor,

although it has not yet been used in the latter capacity.

Data reduction consisted of simply reading the binary pattern
from the strip chart (see Fig. 7.2) each revolution to determine the
moon's elevation with respect to the rocket axis. The phase delay between
the moon sensor and the magnetometer was also scaled, to give the relative
azimuth of the moon and magnetic field projected on a plane normal to the
rocket axis., These data were combined with the magnetometer amplitude

data to determine rocket attitude, as discussed in Sec. 8.2.4,

Performance of the moon sensor was excellent during the first
half of the flight, which was adequate to define attitude for the entire
flight until the violent re-entry maneuvers. Near apogee, the noise level
rose slowly, over a period of tens of seconds, while the moon pulses
slowly dropped until they were no longer visible. Although the cause of
this failure is not definitely known, the most plausible explanation

seems to be loss of detector sensitivity due to temperature rise.
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The inside skin temperature of the instrument section would not normally

be expected to rise more than 20 or 3OOC. In this case, however, the
window cutout may have produced severe local heating, which was transferred,
with several minutes' delay, to the sensor. This problem could easily be

eliminated in the future by thermal isolation of the sensor.

Several other effects were observed in the moon sensor records,
but had no effect on their use for attitude determination. The first was
a period of high noise bursts for about the last second before burnout,
followed by two seconds at the band edge corresponding to no illumination.
Within the next few seconds, while the sensor was recovering to its normal
operation, a 60-msec light burst appeared at the time of command cutoff.
At this time, squib-actuated valves closed the propellant lines., This
behavior is consistent with the appearance of incandescent gases in the
sensor's view (greater than 60 degrees off axis) at command cutoff and
during the final second of burning, a time when combustion was no longer
smooth, as shown by fluctuations appearing in the longitudinal
acceleration., It is also possible, but seems less likely, that the
vibration induced noise in the electronics. The combustion gas explana-
tion is further supported by the electromagnetic noise spectra (Sec. 9.2.2),
the simultaneous anomalies in the impedance probe data (Sec. 9.3.2), and
the conductance probe data (Sec. 9.5.3) at both burnout and command cut-
off, in the absence of transients on any of the other data channels

except the moon sensor.

The second unexpected observation was the appearance of a diffuse
light source, too large to show distinct chopping by the mask, above about
123 km altitude. It was centered at an apparent azimuth of about -24
degrees, and increased in intensity with altitude. The source was pre-
sumably scattered sunlight, since the sun was at an azimuth of -32.7
degrees and an elsvaticn of —-21 3 degrees. This put the sun 11.2 degrees
below the horizon at 100-km altitude, and only 7.0 degrees below the hori-
zon at apogee (205 km), The azimuth discrepancy is due to the nonuniform

aperture of the mask.

Additional bursts, which could be scattered sunlight, appeared

earlier, during the second that the rocket was penetrating the sporadic-E
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layer at 108-km altitude. However, these are accompanied by other bursts
in different apparent directions, some of them stronger than those in

the sun's direction. To make matters still more puzzling, most of these
bursts show well-defined durations, which correspond to the time it took
the aperture to scan a small source. For the time being, they are simply

being recorded as anomalies.

8.2.4 Magnetometer

By using a loop antenna and relying on the rocket roll or spin
to rotate this loop antenna in the earth's magnetic field, the magnitude
of the component of the earth's magnetic field in the direction perpen-
dicular to the rocket axis can be measured. To the extent that the total
field is known, the conic half-angle between the earth field direction
and the rocket axis can be determined. By observing the zero crossings
of the antenna output, the time during a spin revolution when the plane
of the antenna and the plane that includes the magnetic field vector and
the rocket axis are coincident can be determined. One additional inde-
pendent aspect parameter--such as the angle to sun, earth, or moon-- is

necessary to give unambiguous aspect.

The magnetometer consisted of the antenna and a low-frequency
amplifier. The antenna was equalized so that constant output amplitude
was maintained for input frequency or rocket spin rate over the range
0.25 to 30 cps. The gain of the amplifier was adjusted to give full
telemetry channel output for the maximum signals that would be encountered
if the rocket axis were perpendicular to the magnetic field vector. For
small angles, the expected error in determining the rocket axis with

respect to the magnetic field vector was in the order of 1 or 2 degrees.

The same loop antenna was used for the magnetometer and the
low-frequency receivers., Precautions were necessary to prevent thermal
noise from the magnetometer electronics from degrading the sensitivity
of the other receivers. This was relatively easy, because of the wide

frequency separation.

The outputs of the magnetometer for Aerobee 4.58 UI and Aerobee

4,59 UI are shown in Fig. 8.4.
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FIG. 8.4 MAGNETOMETER AND MOON SENSOR OUTPUT
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By using the magnetometer and sun or moon aspect data, the
attitude of the rocket can be calculated. The calculated results in the
form of azimuth and elevation are shown in Fig. 8.5. Note that between
the times 50 and 85 sec on Aerobee 4.58 Ul and 35 and 70 sec on Aerobee
4,59 UI the rocket attitude was constant; after these times, the rocket
attitude began to cone (precess). The coning angle was approximately
3.5 degrees on both flights. Since it is unlikely that any external
force was exerted on the rocket at altitudes corresponding to these times,
the probable cause of coning is due to a redistribution of the liquid
propellants remaining in the rocket tanks. During powered flight, the
propellants are kept aft in the tanks by rocket acceleration; after this
acceleration ceases (burnout), the remaining propellants may redistribute
themselves in a more stable position and result in the rocket axis no
longer being aligned with the angular momentum vector (simple coning).
The burnout distribution of the propellants may be conditionally stable
and the time of redistribution will then be arbitrary, thus explaining
the different times at which Aerobee 4.58 UI and Aerobee 4.59 UI began to

cone,

In addition to attitude, the rocket spin rate and the instantan-
eous angular displacement of the rocket about the spin axis can be deter-
mined from the magnetometer as well as from the moon and sun sensors.

The angular displacement data is not presented here but was used to deter-
mine the orientation of the loop and electric antennas. The spin rate
varied during the flight preceding burnout but remained constant
thereafter. The constant rates were 2.455 and 2.900 rps for Aerobee
4.58UI and 4.59 UI respectively. The relationship between spin rate and
velocity for Aerobee 4.59 UI is shown in Fig. 8.6. During booster burn
(less than 3 sec) the spin increased rapidly; however, as soon as the
booster was expended, the spin rate immediately decreased to a value
determined by the total rocket velocity and the rocket effective fin
angles. Except for a short time between 19 and 25 sec, the spin rate

variation followed very closely the velocity variation indicating a
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tight coupling of the fins to the atmosphere. As the atmospheric den-
sity decreases with altitude, the fin coupling decreases and spin no
longer follows the total velocity. At 50 sec (35 km altitude) the spin

becomes very nearly constant, independent of the increasing velocity.
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9., DATA ANALYSIS AND DISCUSSION

9.1 Narrow-Band Sweeping Receivers

9.1.1 Instrumentation

The four sweeping receivers flown on Aerobee 4,58 UI and
Aerobee 4.59 Ul were: Band 1, 0.20 to 1,6 kec; Band 2, 1.6 to 12.5 kc;
Band 3, 12,5 to 100 kc; and Band 4, 1250 to 1600 kc,

The electrical design and individual circuit boards for Bands 1,
2, and 3 corresponded to the three narrow-band sweeping receivers that
were flown on the EOGO satellite. Mechanical mounting of the circuitry

was modified for the rocket payloads,

Refer to the simplified block diagram in Fig. 9.1 for the

following discussion.

Bands 1, 2, and 3 share a low-frequency vertical loop antenna
and low-noise preamplifier. On Aerobee 4.58 UIl, a 42-turn unshielded
loop was used; on Aerobee 4,59 UI, a 12-turn shielded loop was used.

The area on both was O.48m2 and the inductance was 5.0 and 0.41 mh,
respectively. A matching network between the antenna and the preamplitier
allows a magnetometer output to be obtained as well as calibration sig-
nals to be injected. The matching network is broadband, as is the pre-
amplifier, The impedance presented to the preamplifier input gave
optimum signal-to-noise performance at 100 kc on Aerobee 4,58 Ul and at
10 kc on Aerobee 4,59 Ul, The preamplifier noise temperature was approx-
imately 50°K. Over the frequency range 0,2-100 kc, the sensitivity
varied approximately from 45 to 100 db below 1 gamma® rms on Aerobee
4.58 Ul and from 60 to 90 db below 1 gamma rms on Aerobee 4,59 Ul. The
output impedance of the preamplifier is low to provide isolation between
the receiver bands that obtain their inputs from 2 distribution trans-

former at the preamplifier output,

* 1 gamma = 107° gauss,
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The local oscillator for each of the bands is derived from a
single sweep- or step-frequency oscillator operating at a frequency
suitable for Band 3. For Band 3, the oscillator steps over the frequency
range 112 to 200 kc; dividing by eight, the frequency range becomes 14
to 25 ke for Band 2; and dividing by eight again, the frequency range
becomes 1.75 to 3.13 kc for Band 1. The Band 3 oscillator repeatedly
steps from 200 to 112 kc in 256 discrete steps by varying the charging
current in the timing capacitors of an astable multivibrator. The current
is controlled by an eight-stage (28 = 256) binary scaler, which is stepped
by index pulses from an index oscillator., The index oscillator frequency
determines the sweep oscillator stepping rate and consequently the receiver
sweep rate, On Aerobee 4.58 UL, the index oscillator frequency was
224 cps resulting in a sweep rate of 0.875 sweeps per second; on Aerobee
4.59 Ul, the index oscillator frequency was 515 cps, resulting in a sweep

rate of 2,01 sweeps per second.

The oscillator for the Band 4 receiver is also derived from the
Band 3 oscillator, so that the Band 4 receiver sweeps in synchronism with

Bands 1, 2, and 3.

9.1.,1.1 Circuit Description of Band 1 Receiver

Refer to Fig. 9.1 for the following discussion:

The Band 1 receiver has an input low-pass filter with
passband to 1.6 kc and stopband above 3.2 kc. The pass-band ripple is
less than 0.5 db and the stop-band attenuation exceeds 90 db., The filter
zeros exist at the IF frequency and in the image band to give additional

protection against IF and image band signals.

The mixer is a saturating switching transistor operated
in inverted (interchange of collector and emitter operation) configura-
tion to reduce local oscillator feedthrough. The local oscillator signal
at the output of the mixer is approximately 50 db less than the IF signal

at maximum IF signal level.

The IF amplifier consists of several LC filter sections

(two single-pole and two double-pole stages) with amplifiers between
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stages. The IF frequency is 3.31 kc; the 3-db bandwidth is 40 cps; and
the 60-db bandwidth is 450 cps. The IF amplifier is followed by a
logarithmic compressor that compresses an 80-db dynamic range of input
signal into approximately 20-db output range. A typical response curve
is shown in Fig. 9.2 The log-compressed signal is average detected,
ilow-pass filtered, and applied to the telemetry VCO in the form of a O~
to 5-v signal for an 80-db range in input signal. The output low-pass
filter is a single-section RC filter with a time of constant 6 msec on

Aerobee 4.58 ULl and 5 msec on Aerobee 4,59 UI.

9.1.1.2 Circuit Description of Band 2 Receiver

Refer to Fig. 9.1 for the following discussion:

The Band 2 receiver has an input low-pass filter with
passband to 12.5 kc and stopband above 25 kc. The pass-band ripple is
less than 0.5 db and the stop-band attenuation exceeds 90 db, The filter
zeros exist at the IF frequency and in the image band to give additional

protection against IF and image band signals,

The mixer is a saturating switching transistor operated
in inverted (interchange of collector and emitter operation) configura-
tion to reduce local oscillator feedthrough, The local oscillator signal
at the output of the mixer is approximately 50 db less than the IF

signal at maximum IF signal level.

The IF amplifier consists of two two-pole LC filter
sections with amplifiers between stages. The IF frequency is 26 .5 kc;
the 3-db bandwidth is 160 cps; and the 60-db bandwidth is 1300 cps. The
IF amplifier is followed by a logarithmic compressor that compresses an
80-db dynamic range of input signal into approximately 20-db output
range. A typical response curve is shown in Fig. 9.2. The log-compressed
signal is average detected, low-pass filtered, and applied to the telem-
etry VCO in the form of a 0- to 5-volt signal for an 80-db range in
input signal, The output low-pass filter is a single-section RC filter
with time a constant of 2.3 msec on Aerobee 4.58 Ul and 1.5 msec on

Aerobee 4.59 UI.
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9.1.1.3 Circuit Description of Band 3 Receiver

Refer to Fig. 9.1 for the following discussion:

The Band 3 receiver has an input low-pass filter with
passband to 100 kc and stopband above 200 kc. The pass-band ripple is
less than 0.5 db and the stop-band attenuation is approximately 90 db.
The filter zeros exist at the IF frequency and in the image band to

give additional protection against IF and image band signals.

The mixer is a saturating transistor operated in inverted
(interchange of collector and emitter operation) configuration to reduce
local oscillator feedthrough. The local oscillator signal at the output
of the mixer is approximately 40 db less than the IF signal at maximum
IF signal level. The IF amplifier consists of two two-pole LC filter
sections with amplifiers between stages. The IF frequency is 212 kc;
the 3-db bandwidth is 600 cps; and the 60-db bandwidth is 4500 cps.
The IF amplifier is followed by a logarithmic compressor that compresses
a 80-db dynamic range of input signal into approximately 20-db output
range. A typical response curve is shown in Fig. 9.2, The log-compressed
signal is average detected, low-pass filtered, and applied to the telem-
etry VCO in the form of a 0- to 5-volt signal for an 80-db range in
input signal. The output low-pass filter is a single-section RC filter
with time a constant of 1,0 msec on Aerobee 4.58 Ul and 0.75 msec on

Aerobee 4,59 UIL.

9.1,1.4 Circuit Description of Band 4 Receiver

Refer to Fig. 9.1 for the following discussion:

The Band 4 receiver consisted of an independent vertical
loop antenna, preamplifier, local oscillator, mixer, IF amplifier,

logarithmic compressor, and average detector.

On Aerobee 4.58 Ul, a four-turn unshielded loop of 96/36
litz wire was wound in the approximate shape of the nosecone. The area
was 0,48 m2 and the inductance was 52 uh, This inductance was made an
element in the RF preselection filter. On Aerobee 4.59 UI, a single-

turn shielded loop of RG-58/U coaxial cable was used and wound in the
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same shape and had the same area as on Aerobee 4.58 UL. The outer
conductor of the coaxial cable was used as the shield, This conductor
was broken at the top to prevent coupling a shorted turn to the antenna.
The shield was grounded at the bottom to the center tap of the input
transformer, thus providing a balanced shield to minimize sensitivity

to electric fields, The antenna and balanced-to-unbalanced input trans-
former were made an integral part of the input filter. A calibration
signal was injected at the input filter on both Aerobee 4.58 UI and
Aerobee 4.59 UI,

The preamplifier consisted of the input filter mentioned
above; a low-noise, broadband amplifier; and another filter. The pre-
amplifier noise temperature was approximately 60°K. The minimum detectable
signal field strength was approximately 110 db below 1 gamma rms. The
filters at the input and output of the preamplifier were identical
except for impedance level; the input impedance level was chosen for
optimum preamplifier signal-to-noise ratio; and the output impedance
was chosen to match the mixer. The filters were band-pass (1250 to
1600 kc) with 3-db ripple in the pass band and 45 db attenuation in the
stop band. The filter zeros were placed at the IF frequency and in the

image band to provide additional suppression of IF and image band signals,

The mixer consisted of a single transistor used as a
series gate in the RF signal path and turned on and off at the local
oscillator frequency. The RF signal was applied to the transistor
emitter and the local oscillator signal to the base. The output was
taken from the collector of the transistor, which was tuned to the IF
frequency to filter out undesirable local oscillator and mixer frequencies

and provided voltage gain,

The local oscillator frequency was controlled by a
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sweep with the other sweeping receivers, the Band 4 local oscillator

was derived from the Band 3 local oscillator by first using a frequency-
to-voltage converter (discriminator) to generate a sweeping voltage and
then applying this voltage to a voltage-controlled oscillator, the Band 4

local oscillator. The Band 4 oscillator was an emitter-coupled astable
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multivibrator which covered the frequency range 1975 to 2325 kc. The
linearity of the sweep was approximately 0.l percent and the frequency
stability over expected operating conditions was approximately 1 percent,

This signal was applied to the base of the Band 4 mixer.

The IF amplifier consisted of two amplifiers each followed
by a two~-pole LC filter., The IF frequency was 725 kc; the 3-db bandwidth
was 2.0 kc and the 50-db bandwidth was 10 kc.

The output of the IF amplifier was applied to a logarithmic
compressor, which compressed an 80-db input signal range into approx-
imately a 20-db output range (see Fig. 9.2). The log compressor was
followed by an average detector and low-pass filter. The output of the
low-pass filter (0 to 5 v) was applied to the telemetry VCO, The output
filter was a single-section RC filter with time a constant of 0.8 msec on

Aerobee 4.58 UI and 0,6 msec on Aerobee 4.59 UI.

9.1,1.,5 In-Flight Calibrator

Every 16th sweep of the sweeping receiver, a spectrum of
signals was injected into the high- and low-frequency vertical loop an-
tennas to provide in-flight calibration of the four sweeping receivers.
This calibrator also injected 22.,3-kc signals into the NSS receiver and
connected a known impedance in place of the electric dipole antenna for
impedance probe calibration., The calibration of the sweeping receivers
continued for one full sweep (256 steps); however, the NSS receiver and
impedance probe calibrations continued for only four steps. On Aerobee
4,58 UL, signals derived from the impedance probe reference oscillators
(1.54 and 120 kc) were used for receiver calibration. On Aerobee 4.59 UL,
to obtain a more uniform spectrum in each band, a separate spectrum was
generated for each band, Oscillators on frequencies 0.2, 1.6, 12,5, and
105 kc were used to generate spectra for Bands 1, 2, 3, and 4, respec-
tively. 1In both flights, the calibrator spectrum included signals in

the broadband receiver frequency range, thus calibrating that receiver also.
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9.1.2 Data and Discussion

9.1.2.1 General

During the flights, the outputs from the four sweeping
receivers were recorded on magnetic tape along with other telemetry data;
however, the data used exclusively for data analysis were recorded in
real time on oscillograph chart paper by the telemetry receiving stations
at Wallops Island. For conveunience, the outputs of the four sweeping
receivers occupied exclusively one chart record. Samples of this data,
modified to show frequency and amplitude calibrations, are included with
the discussions of the data from each receiver in the following sections,
To preserve all the data exhibited at the output of the receivers, fast
recorder chart speeds were required, resulting in several hundred feet
of recording on each rocket flight. To analyze the data on these chart
recordings, a movie (described in Sec. 7.5), which displayed the data

in the form of time-varying spectrograms, proved invaluable.

In the following discussions, significant features of the
data are pointed out but not necessarily explained. Due to the great
detail contained in the spectra, some significant features of the data
undoubtedly remain to be discovered by a deeper penetration; also to

maintain brevity some data are not presented.

9.1.2.2 Band 1 Receiver, Aerobee 4.58 Ul

The output of Band 1 contained considerable noise during
the powered portion of the rocket flight. Two explanations are likely:
(1) Signals generated in the electronics by
mechanical stresses (microphonics), and
(2) Signals generated by the lateral motion
of the loop antenna in the -earth's mag-
netic field.
The latter explanation is supported by the fact that the noise was am-
plitude modulated at twice the spin rate of the rocket. Between rocket
burn-out at approximately 54 sec (41 km) and command cutoff at 66 sec
(64 km) signals appeared in Band 1. At command cutoff the signals
disappeared. This phenomena was also evident in Band 2 and a possible

mechanism for generation of these signals is discussed in Sec. 9.1.2.3.
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After command cutoff (64 km) there were no signals above
the threshold in Band 1., The samples of data taken by this receiver,
shown in Fig. 9.3, essentially depict the receiver threshold. The
apparent large signal at the low-frequency end of the sweep is a syn-

chronizing pulse,

9.1.2.,3 Band 2 Receiver, Aerobee 4,58 Ul

The output of the Band 2 receiver during the ascending
and descending portions of Aerobee 4.58 Ul above 85 km shows a hiss hand
(so called because of its broadband nature). Selected portions of the
output are shown in Figs. 9.4 and 9.5. The frequency range of the re-
ceiver is 1.5 to 12.5 kc and one sweep or frame takes approximately

1.14 sec,

Figures 9.4 and 9.5 were made after observing a film of
the data from which it was determined that signals received at a partic-
ular altitude showed similar amplitude and frequency structure. Several
frames were overlayed around selected altitudes to obtain an integrated
effect and to emphasize the characteristics of the noise at that

altitude,

Below 64 km, the signals were very noisy and for the
most part associated with the burning of the rocket. It is interesting
to note that between the time of burn-out (54 sec, 41 km) and command
cutoff (66 sec, 64 km) signals in Bands 1 and 2 appeared, which increased
in amplitude and decreased in frequency. These signals ceased abruptly
when the command cutoff was received by the rocket; therefore, they
are undoubtedly caused by some rocket disturbance. Additionally, these
signals were not amplitude modulated by the rocket spin, which indicates
an isotropic signal source. A plausible source of these signals is
the ionized exhaust plume, which is caused by gases escaping from the
hot rocket exhaust. The mechanism for signal generation in the ionized
exhaust is not known. At 64 km, almost all external signals have
dropped below the receiver threshold and the only signals in Band 2 are
interference signals from the rocket telemetry system and signals from

Omega stations at 10.2 kc. The telemetry signals located at approximately
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1.7, 2.3, 3.0, 3.9, 5.4, and 7.35 kc remain at a constant level through-
out the flight. The peak at 1.5 kc is caused by local oscillator punch
through and marks the start of each frame. Ten frames immediately above
and below 100 km were overlaid, and at that altitude in Figs. 9.4 and 9.5
a slight rise in the background noise throughout the band can be seen.
The receiver threshold is 70 db below 1 gamma rms at 1.5 kc to about

80 db below 1 gamma rms at 12.5 kc (see Fig. 9.6).

At 125 km the noise has increased in amplitude and still
covers the complete band. On the descending portion of the flight one
frame contains a dispersed whistler. (From Fig., 9.68 it is seen that
there is a knee in the electron density profile at 125 km,) At 150 km,
the higher-frequency noise shows a decrease in amplitude, while at 175 km
signals above 7.5 kc have practically disappeared below the receiver
threshold, Above 200 km, the signals increase in amplitude but remain
cut off above 9.0 kc. Above 225 km, a strong band of noise between 6 kc
and 8 kc predominates. The peak amplitude measured at 235 km and 7.2 kc

is 50 db below 1 gamma rms.

To summarize, the hiss starts above 85 km and is about
75 db below 1 gamma rms in amplitude and contains frequencies up to
5 ke. It increases in amplitude and frequency with altitude up to
about 175 km, where signals above 7.5 kc decrease. Above 175 km there
appears a strong hiss band from 6 to 8 kc with a few distinct peaks

around 6,7, 7.2, and 8.1 Kkc.

Omega stations (10,2 kc) are observed throughout most
of the flight with amplitudes of approximately 76 db below 1 gamma rms
at 85 km ascending, 82 db below 1 gamma rms at 175 km ascending, and

82 db below 1 rms at 100 km descending.

9.1.2.4 Band 3 Receiver, Aerobee 4.58 UI

The output of the Band 3 receiver on Flight 4.58 Ul, as
seen in Fig. 9.7, contained many signals and interferences sources,
Figure 9.7 was drawn by tracing eight different sweeps from the strip
chart recordings taken during the rocket flight. Each sweep, from 10

to 102 ke, took 1.14 sec to complete. The receiver threshold varied
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from about 86 db below 1 gamma rms at 10 kc to greater than 100 db below
1 gamma rms at 100 kc. The interference sources were the telemetry sub-
carrier oscillators located at 14,5, 22,0, 30.0, 40.0, 52.5, and 66.9 kc.

There are receiver spurious responses located at 95 and 102 kc.

In this band the broadcast stations received were NAA
at 17.8 kc, NSS at 22.3 ke, and Loran C around 100 kc. Signal strengths
versus altitude for these stations are shown in Figs. 9.8, 9.9, 9.10,

9,11, 9.12, and 9.13.

The signal strength versus altitude plots for NAA at
17 .8 kc shown in Figs, 9.8 and 9.9 also contain a spot noise measurement.
Every sweep, a data sample was taken at 17.8 kc¢; and since the station
was sending traffic during the flight, the samples represent received
signals, noise, or some level between. From the data there is seen a
sharp drop in level at about 85 km of both the signal and noise. The
signal returns above 100 km and is seen to increase in field strength

until the peak of the flight.

The amplitude versus altitude plots for NSS at 22.3 kc
are shown in Figs., 9,10 and 9.11. These measurements were taken with
the sweeping receiver and can be compared with data in Fig. 9.72 which
were taken with the phase-tracking receiver. By prior arrangement,

NSS was transmitting continuously throughout the flight.

By measuring the amplitude or level at fixed frequencies
where no interference or known signals appear, a profile of the noise
versus altitude may be obtained as in Figs. 9.14, 9.15, 9.16, and 9.17,
It can be seen that there is a sharp decrease in the noise at 86 km and
a slight increase around 125 km, From 9,68, the curve of electron
density versus altitude, there appears to be a knee in the electron

density curve at this altitude.

Figures 9.12 and 9,13 show Loran C signal strengths

9
versug altitude until th

ey decreased below the receiver noise level
around 75 km, Abové 75 km the figures show the ambient noise level (near
receiver threshold) as a function of altitude. 1In the vicinity of

125 km, there appears a rise in the noise level similar to the lower

frequencies,
61
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9.1.2.5 Band 4 Receiver, Aerobee 4.58 UI

The output of the Band 4 receiver clearly shows one
broadcast station every 10 kc across its band (1250 to 1600 kc)
during the portions of the flight below the ionosphere (see Fig. 9.39
in Sec. 9.1.2.9). An expected sharp change in attenuation due to the
electron gyrofrequency resonance at one or more stations in this band
as the rocket penetrated the ionosphere was not apparent. The probable
reason this effect was not seen is that the high collision frequency
dominated the attenuation and reduced the effect. In addition, it
would not be seen easily due to the low data-sampling rate (once per
second at a particular frequency), the high rocket velocity, and the

large gradient in electron density.

In general, each signal started to decrease in amplitude
above 65 km, The absorption rate ranged from 0.75 to 2,05 db/km for
10 different signals in the band. The total attenuation was approximately
20 db while the rocket moved through the 65 to 85 km region. Around
85 km there appeared slight increases in strength before the signals
were reflected at about 90 km. Plots of some of the amplitude versus

altitude data are shown in Figs. 9.18 through 9.27.

Above 95 km there was an increase in the noise picked up
by this receiver., The noise appeared to be impulsive in nature covering
the frequency band with amplitude impulses at the higher frequencies.
There are several possible explanations for this phenomenon; one 1is that
the noise is local electric field signals generated within the rocket,.
On this flight, the antenna was an unbalanced loop and fairly sensitive
to electric fields. As the rocket went into regions of higher electron
density the conducting plasma increased the coupling between the antenna

and electronics sections of- the rocket.
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An upper bound on the electron density around 86 km was
obtained from the points where various signals were reflected. By as-
suming straight-line paths from the transmitter to points where the
signal was cut off, the maximum electron density for plasma cutoff
(where wave frequency equals plasma frequency, X = 1) may be calculated

by the formula:

fz(cos ei)z

3
N =
31 electrons/cm
where
f = wave frequency
Gi = angle of incidence.

Because the sampling rate was low and the rocket spinning, the exact
altitude at which the signal was totally reflected cannot be determined,.
The range of altitudes from where the signal was definitely present to
where it completely disappeared is small except in a couple of cases,
From Fig. 9.28 it can be seen that the majority of the signals were
reflected from around 88 km. An explanation why the electron densities
computed from plasma cutoff in Fig. 9.28 do not agree with the densities
calculated via phase delay of NSS is that the radio waves were bent
downward by either the plasma below 85 km, the sharp change in electron

density near 86 km, or both,

One case is shown in Fig, 9.28 at 1470 kc, where the
electron density calculated at X =1 is less than the density calculated
by phase changes in NSS. It is probable that the reflection seen at
this point occurs when X =Y + 1~ 2 (Y is the ratio of electron gyro-

frequency to wave frequency).

Because of the low sampling rate and high specd of the
rocket in the region where the important effects took place, many
questions remain unanswered, Wiitli a higher sampling rate it would be pos-
sible to obtain good attenuation characteristics of signals in the lower
ionosphere, Very accurate phase delay measurements could be made on

signals in this band from 65 to 85 km in the daytime, because reflections
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should not be a problem. With another loop antenna,

ponents of the wave could be measured and the direction of the wave

all magunetic com-

front calculated to help resolve the question as to the effect of the

earth's magnetic field on signals with frequencies near the electron

gyrofrequency.

Another reason for a higher data rate is that,

rocket went through the cutoff region,

as the

some signals reappeared for a

sample or two after first being apparently cut off at a lower altitude.

Although not conclusive, this suggests that the electron density at the

lower edge of the daytime ionosphere is either rapidly varying in time

or is heterogeneous, with horizontal gradients.
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The noise seen around the gyrofrequency above the wave
cutoff region, if not caused by the rocket instrumentation,could be
gyrofrequency noise caused by interaction between electrons, ions, and
the earth's magnetic field excited by solar radiation, the rocket, or
ground sources, By reducing the instrumentation interference and properly
shielding the loop antenna and preamplifiers, this noise if it exists

should be easily detectable.

9.1.2,6 Aerobee 4.59 UI Sweeping Receivers

Portions of the outputs of the Band 1, 2, and 3 receivers
during Aerobee 4,59 Ul are shown in Figs, 9.29 and 9.30. The amplitude
and frequency scales are shown at the bottom of each figure. In each
set of sweeps there are marks on a horizontal line, which indicate
frequencies, Also in each set is a reference line which in Band 1
represents the receiver threshold; in Band 2, 90 db below 1 gamma rms at 2 kc;
and in Band 3, 80 db below 1 gamma rms. The amplitude scales are all
in db below 1 gamma rms, The number to the left of each set of frames
is the altitude in kilometers of the middle of the set (for example, the
set in Band 2 at 60 km contains five sweeps, one of which was taken as
the rocket moved through 60 km, two of the other sweeps were above and
two were below the 60-km altitude), The sweep rate was 2,01 sweeps per
second, and these receivers shared a common vertical loop antenna and

preamplifier.

In looking at the receiver data displayed in Figs, 9.29
and 9,30, it is important to recognize first the interference sources
and spurious responses. The major sources of interference are the
telemetry subcarrier oscillators. An attempt was made to minimize these
sources by rotating the receiving antenna for minimum coupling to the
telemetry oscillators and by shielding the oscillators with high per-
meability material, The telemetry interierence sources appear at con-
stant levels as a function of time at approximately these frequencies:

1.7, 2.3, 3.0, 3.9, 5.4, 7.35, 10.5, 14,5, 22.0, 30.0, 40.0, and 66,9 kcs,
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There are several spurious responses caused when the
second harmonic of the local oscillator minus the signal frequency is
equal to the IF frequency. For example, NSS at 22.3 kc creates a response
when the local oscillator is at 117.1 ke (117.1 X 2 - 22.3 = 212), This
appears as an output at the time when a (212-117) = 95 k¢ signal should
appear. There are also spurious responses from other strong sources such
as the one at 98.6 kc from NAA at 14.7 kc. The spurious responses are
down approximately 35 db from the original source and are a result of

a nonlinearity in the mixer.

The start of each sweep is signaled by a full-scale sync
pulse in Band 1. There is a slight rise at the end of the Band 1 sweep,
which is caused by the 1.7 kc telemetry oscillator, The start and eand
of Band 2 and the end of Band 3 also have outputs caused by the local
oscillator feeding through the IF amplifier.

The data shown in Figs. 9.29 and 9.30 do not contain

calibration signals.

Disregarding the coherent signals (interference, spurious
responses, and broadcast stations) the remaining information on Figs. 9.29
and 9.30 is a picture of the frequency and amplitude distribution of mag-
netic noise at Qarious altitudes for the conditions that existed at the
time of Flight 4,59 UI., The most notable characteristics of the flight
were a sporadic E layer at approximately 108 km and considerable sferic

activity.

9.1.2,7 Band 1 Receiver, Aerobee 4,59 Ul

In Figs. 9.29 and 9.30 ten sweeps of the output of the
Band 1 receiver were overlaid and traced around selected altitudes to
give an integrated picture that is characteristic of that region. At an
altitude of 50 km, which is below the ionosphere and above the powered
portion of the flight, it is seen that the noise covers the band from
the lowest frequency (0.2 kc¢) to about 1.3 ke, The peak amplitudes of
thie signals around 5G km ou the ascending poiti
about 40 to 50 db below 1 gamma rms, It is presumed that these signals

were caused by distant sferics and that the null starting at 3 kc (in

91



Band 2) is caused by the earth-ionosphere waveguide cutoff effect
(Johler, 1962). The notch is a predominant feature of this band through-
out the flight except during the sporadic E layer at 106 km and when the
rocket is above 180 km, This phenomenon is discussed in Sec, 9.1.2.8.
The maximum signals in this band on the ascent occur around 80 and 106 km
and measure 25 db below 1 gamma rms. The strong signal at 80 km is
caused by a strong sferic, which also can be seen in the other baunds

at similar positions in the sweep.

Around the sporadic E layer and above 180 km the ampli-
tudes of signals appear to be larger than at other regions. As the re-
fractive index increases it is expected that the magnetic field strengths
would also increase., The Band 1 receiver shows strong signals over the
flight of the rocket and indicates that there are probably strong sig-

nals below the 200-cps receiver range.

9.1.2.8 Band 2 Receiver, Aerobee 4.59 Ul

In both ascending and descending portions of Aerobee 4,59 Ul
the most prominent feature of the output of the Band 2 receiver is a
notch that occurs about 3 kc. The notch is somewhat obscured by telem-
etry interference from the 1.7, 2.3, 3.0, and 3.9 kc VCO's, It is pre-
sumed that the notch is caused by the earth-ionosphere waveguide cutoff
effect (Johler, 1962)., It is interesting to note that the notch does
not appear when the rocket is in the sporadic E layer during ascent or
above approximately 180 km, and the general level of signal strength
rises in these regions, The increase in noise level in these regions
can be explained as an increase in magnetic field strength due to in-
creased refractive index; however, the disappearance of the notch is not
understood, The disappearance of the notch and the increase in signal
levels is not significantly apparent during descent through the sporadic
E layer possibly because the effective thickness of the layer is too
small, or because the layer may be disappearing to the east (dark side).
Possibly the notch is obscured by signals generated locally due to the
disturbance of the layer by the rocket, or due to electron-ion gyro-
frequency interaction phenomena., Enhancement of signals due to re-

flections from these boundaries (standing waves) is possible,
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The minimum signals in the band occur when the rocket
is in the regions around 130 km; this agrees with the electron density

(see Fig., 9.71) and refractive index minimums.

From the data that are available it would appear that the
amplitude versus frequency profiles of sferics received in a particular

region are a function of the region and not constant with altitude.

9.1.2.9 Band 3 Receiver, Aerobee 4.59 Ul

Figures 9.31 through 9,38 show signal strength versus
altitude of NAA at 14.7 kc, and NSS at 22.3, 64.2, and 88.0 kc, both
ascending and descending. These stations except NSS at 22.3 kcs were
keying on and off during the greater part of the descending portion of
the flight., The majority of these signals show a decrease in amplitude
starting at the 70- to 80-km level with a minimum point around 90 km,
but they definitely increase again at higher altitudes and become cir-
cularly polarized at the peak of the trajectory. An indication of the
noise level as a function of altitude can be obtained by looking at the
amplitude when the signal is keyed off. There are some Loran C signals
around 100 kc during the ascending part of the flight up to just above
80 km, which reappear at about 90 km on the descending portion. There
are some unidentified broadcast signals at approximately 70, 72, and

80 kc, which are below receiver threshold above 80 km,

The noise in Band 3 is quite strong up to 80 km and
shows a definite decrease at 90 and 100 km, The ground station signals
also show a definite amplitude decrease between 80 and 90 km. There is
a slight increase around 106 km when the missile is in the sporadic E
cloud; then the amplitude decreases until a minimum is reached at 160 km,
At heights above 160 km there is a slight increase in signal strength.
It is interesting to compare the noise in the output of Band 3 with the
electron density measurements as shown in Fig. $.71. Since the loop
antenna is sensitive to magnetic fields it is to be expected that the

amplitudes would show an increase when the refractive index increases.
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9.1.2.10 Band 4 Receiver, Aerobee 4.59 Ul

There appears one broadcast station every 10 kc across
the band of the receiver (see Figs. 9,39 and 9.40). Four stations were
selected and point-by-point plots of signal strength versus altitude
were made over the complete flight (see Figs. 9.41 through 9.48). Only
in one place did the signals decrease below the receiver threshold--

during the descending pass through the sporadic E layer (see Fig. 9.40).

Most of the signals showed slight decreases starting above
80 km. There was then a sharp decrease at the sporadic E layer and the
signals stabilized to a lower level immediately above the layer. As the
rocket approached the peak of its flight, the spin modulation of the
signals decrease indicating that the waves were becoming circularly
polarized. There was also a decrease in amplitude at the extreme

altitude.

The remarkable feature about this band of signals was
the strength of the signals above the E layer. Since the coverage of
the layer is not known, it is presumed that the signals came through
regions of low electron density, were reflected from the F layer, and
returned to the top side of the E. The fact that signals appeared inside
ﬁhe sporadic E layer on the ascending portion of the flight where the
electron density was greater than that required for plasma cutoff is

also remarkable and yet to be analyzed in detail.

A large volume of data from this receiver has not been
reduced or analyzed, It is expected that some useful information could
be extracted from the data taken around the peak of the flight. Because
of the complex geometry and reflections produced by the sporadic E cloud,
the analysis of these data would require more effort that was available,

As a result this interesting work was not undertaken,
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9.2 Broadband Receiver

9.2.1 Instrumentation

The broadband receivers flown aboard Aerobee 4.58 UI and
Aerobee 4.59 Ul are identical to the receiver presently orbiting on the
OGO-1I spacecraft (see Figure 9.1 for simplified block diagram). They
derive their input signal from the output of the low-pass filter of the
Band 2 sweeping receiver, and are therefore sensitive to signals up to
12.5 ke, The input signals in the frequency range 0.3 to 12.5 kc are
logarithmically compressed and split into two channels., One channel
retains the phase or spectral information and the other amplitude infor-

mation,

In the spectral or phase channel the output of the log com-
pressor is fed into a clipper, which retains the original frequencies
and adds the odd harmonics. The clipper is followed by a filter to
suppress the harmonics above 12,5 ke, The filtered output is then
translated in frequency to the band from 67.2 to 79.4 kc and applied to
the telemetry baseband. This translation is with respect to a crystal
oscillator in the rocket operating at 66.9 kc. The crystal oscillator

signal is also transmitted as a phase reference.

In the amplitude channel, a two-phase detector follows the
logarithmic amplifier. A two-phase detector is used so that a 300-cps
bandwidth can be maintained at the output for signals down to 300 cps.

The output on the detector is used to frequency modulate a subcarrier
oscillator (VCO) of the telemetry system. A 0.5-to-5 v output corresponds

approximately to an 80-db dynamic range,

9.2,2 Data and Discussion

The spectral portion of the broadband data was processed and
partially analyzed at Stanford University, while the amplitude portion
of the data recorded directly on charts at the teleweiry receiviang sta-
tion has received little attention to date except to interpret the spec-
tral data. The discussion that follows, except for the Stanford University

findings, is mainly qualitative,
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9.2,2,1 Spectral Data

9.2.2,1.1 General

The spectral data contained on magnetic tapes were
transcribed to obtain intensity-modulated film strips permitting visual
examination, The transcription process using a Rayspan spectrum analyzer
is described elsewhere (Helliwell EE gl, 1961) ., The preliminary Rayspan
records covered a frequency range of O to 20 kc and provided a resolu-
tion of better than 0.1 sec. Features observed on these records were
further investigated on additional Rayspan intensity records and on
sonograms (Kay Electric Sonograph). Samples of the Rayspan film records
are shown in Figs., 9.49 through 9.52 to facilitate discussion of receiver

operation and to illustrate features of the data.

Figures 9.49 through 9.51 display data related to
Aerobee 4,58 UI (daytime). Two pairs of records are shown in each of the
figures; the upper record of each pair is for data telemetered from the
rocket, while the lower record is data recorded on the ground at Greenbank,
W. Va. Each of the records displays signals from O to 20 k¢ over an interval
of approximately 20 sec. Time elapsed following lift off is indicated along
the lower edge of each record pair and rocket height along the upper edge.
Data for Aerobee 4.59 Ul (nighttime) are illustrated in Fig. 9.52, which was
prepared at Stanford University. Two pairs of records are arranged in a man-
ner similar to those on the daytime displays. The nighttime records display

signals from O to 10 kc over an interval of approximately 10 sec.

A number of horizontal lines representing signals
of approximately constant-frequency are evident on the Rayspan spectral
records. On the ground records for the daytime flight, nearly all the
fixed-frequency signals originated from VLF transmitters (NPG, NAA,
OMEGA) . (The apparent NAA signal near 4 kc is due to overload in the
recording system.) The fixed-frequency signals on both the daytime and
nighttime rocket records are mainly due to interference from telemetry
subcarrier oscillators. Subcarrier interference can be identified near
2, 2,5, 5,5 and 12 kc on the daytime records and near 1.5, 3, and 4.2 kc

on the nighttime records. Omega 10.2-kc transmissions from both
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Forestport and Balboa are present on the daytime rocket record for a
short time after launch and again before breakup. On both the rocket and
ground records for the nighttime flight the NAA transmissions have been
translated from 14.7 kc down to a frequency of a few hundred cycles,

The NAA signal has been translated as an aid in explaining the apparent
variation in signal intensity on the data telemetered from the rocket,
Each time the NAA transmitter is keyed on, the relative intensity of

the background noise appears to decrease (see record 3 of Fig. 9.52).
This feature is attributed to the action of the limiter in the spectral
channel. The limited output is constant regardless of input amplitude
or spectral distribution. A change in record intensity at a particular
frequency does not necessarily represent an amplitude change at that
frequency, but does represent a change in spectral distribution in the
entire band. The largest signal, which in this case is NAA, predominates

and the record intensity at other frequencies is effectively reduced.

A number of whistlers, including a new class, are
evident on the telemetered records in Fig. 9.52. The initiating sferic
of each is indicated by a small arrow on the abscissa of the record.

The findings of the whistler study by workers at Stanford University are

discussed later, Other features of the spectral data are described below.

9.2.2.,1,2 Aerobee 4,58 UI

The powered portion of Aerobee 4.58 ULl lasts 54 sec
and appears responsible for generation of noise in two different fre-
quency bands, as illustrated in the two pairs of records in Fig. 9.49.
The lower band from O to about 300 cps is the predominant signal during
the first 6 sec and last 16 sec of powered flight. This band appears to
he amplitude modulated at twice the rocket spin rate. The second noise
band from 2 to 4 kc is dominant from 8 to 33 sec after lift-off and is not
spin modulated. As this latter band becomes less prominent from 33 to
46 sec, spin-modulated lower-frequency noise again becomes apparent.
Within 1 or 2 sec following burn-out (and cessation of the lower noise
band) noise from 2 to 4 kc again appears weakly, and increases in ampli-
tude as it decreases in frequency to abfinal band from 1 to 2,5 kc at

66 sec., This noise band is completely absent following a 2-sec command
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tone to eut off the rocket propellant inputs. Previously suppresscd
telemetry interference then becomes evident below 4 k¢, The command
tone was not sent until 12 sec after burn-out and it appears that the
frequency and amplitude variable noise band is related to the escape of
ionized gas from the hot exhaust. There is some evidence that a similar
condition was beginning to build up on the nighttime flight following
burn-out, but the cut-off command was much earlier, approximately 2 sec-

onds after burn-out,

Another feature observed (Fig. 9.49) throughout the
powered flight, and to an altitude of approximately 60 km, is the 10.2-kc
transmissions from Forestport, N.Y, and Balboa, Canal Zone, These sig-
nals were amplitude modulated at twice the rocket spin rate, The 10.2-kc

signals were observed again below 60 km on descent,

One of the most prominent features of the Aerobee
4,58 Ul spectral data is a hiss-like band of noise between 2 and 5 kc
(see Fig, 9.50) that begins near 100 km on ascent and ceases near 100 km
on descent, The noise energy remains nearly constant, or changes only
gradually, and is not spin modulated. (Apparent amplitude modulation
near the top of the trajectory is due to an increase in spin-modulated
noise in the 6.5 to 8 kc bands, to be discussed later.) The 2 to 5 kc
noise band is not detectable on the ground at Greenbank and may be

generated by the rocket itself passing through an ionized region.

As many as nine whistlers or associated phenomena
were observed during the daytime flight., The first of these signals
observed on ascent and the last observed on descent both occur when the
rocket was at 125 km. None were observed in 1.5 minutes spent above
225 km, The discrete signals are of two general types. The first type
(see upper record in Fig. 9.50) comprising four of the nine signals
begins with a relatively strong burst of energy usually confined in the
frequency range 7 to 9 kc. The intensity mudulated Rayspan records,
although of low time resolution for this purpose, suggest that the initial
energy is dispersed as a function of frequency and resembles a short
section of a normal whistler trace. The initial burst is followed by

several usually well-defined whistler traces with energy in the range
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3 to 10 ke, Four of the identifiable traces follow the initial hurst by
approximately 0.3, 0.5, 0.8, and 1.0 sec at a frequcncy of 8 kec. These
times are increased by approximately 0,2 sec at 4 kc., None of the
whistler-mode signals of the first type were observed at the Greenbank

ground station,

The second type of discrete signal (see Fig. 9.51)
does not have the well-defined traces of the first type., Their appearance
ranges from several very thick or broad whistler traces to a broad noise
band decreasing in frequency over a period as long as 5 sec, A second
Type 2 signal often follows the first by about 5 sec. Energy of the
second-type signal lies between 2 and 8 kc, with a greater proportion at
the low~frequency end than is observed in the first-type signal. Some
characteristic structure is evident in these long bands that suggests
superposition of many whistler traces. Another significant feature of
each of the second-type signals is that a discrete noise band is observed
on the ground associated with the low-frequency end of the signal observed
in the rocket. The ground noise observed at Greenbank (see Fig. 9.51)
is confined between 3 and 6 kc and has a duration of 2 to 3 sec. Char-
acteristic rising tones can be observed in the ground noise that are

essentially absent in the rocket noise,

At an altitude of approximately 190 km (on ascent)
a noise band near 8 kc of only a few hundred cycles width first makes
its appearance. Relative amplitude of this band is modulated at the
spin rate and not at twice the spin rate, as might be expected with a
rotating loop antenna, The 8-kc band disappears at about 234 km, near
the top of the path; but it has in the meantime been joined at 200 km
by a band near 6.5 kc and at 210 km by a band near 7 kc, The 6.5-and
7-kc bands continue to an aliitude of 200 km on descent and are accom-
panied near the top 10 km of the trajectory by several other bands between

€.5 and 8 k¢

. “ia

. In addition to the apparent amplitude modulation at the
spin rate, the bands also exhibit some degree of frequency modulation
at the same rate., The narrowband spin-modulated noise is illustrated

in the lower pair of records in Figure 9.50,
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9.2.2.1.,3 Aerobee 4.59 Ul

The powered portion of the nighttime flight lasts
52 sec and produces two noise bands similar to those on the daytime
flight, with an almost identical sequence of interchange in relative
amplitudes. Determination of the presence or absence of spin modulation

on these bands is prevented by periodic predominance by NAA transmissions

The most prominent feature of the Aerobee 4.59 UI
spectral data is the presence of about 75 whistler signals, including
a new class, These discrete signals were analyzed at Stanford University

and their results are summarized later in this section.

Intermittent hiss-like noise in the frequency range
5 to 9 kc is observed between 85 and 110 km on both ascent and descent.
The interesting feature of this noise is that it is composed of several
bands that appear to change in frequency as a function of time and rocket
altitude., The quasi-period bands appear to rise in frequency during
rocket aséent and decrease in frequency during descent. The sweep period
is about 4 to 5 sec at the lower altitudes and decreases to about 2 sec
at the higher altitudes., These sweeping bands can be identified to some

extent on record 3 of Fig. 9.52,

Identification of additional features of the night-

time data, other than sferics, is all but prevented by the presence of

NAA signal and its dominance of the spectral distribution.

9.2,2,2 Anmplitude Data

9.2.2,2,1 General

Amplitude VCO data, in addition to being recorded
on magnetic tape with other telemetry subcarrier signals, were recorded
directly on chart paper at the time of the flights. These chart records
provide data with a resolution of 3 to 4 msec. Examples traced from
the Aerobee 4.59 Ul record are shown in Fig. 9.53 to illustrate the
nature of the amplitude data. The tracings each show approximately 1 sec
of data at the indicated altitudes. The amplitude scale in db below

1 gamma rms is appropriate for signals at a frequency of 5 kc, Signals
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at other frequencies can be calibrated with the knowledge that the

broadband response increases almost linearly with frequency.

The first, second, and eighth traces of Fig. 9.53
illustrate broadband noise in which impulsive sferics are superimposed
on the background. The third through seventh traces also have impulsive
sferics superimposed on the background, but in addition, include de-
flections due to whistler-mode energy. The sferic associated with each
whistler is quite apparent. Periodic predominance by keyed NAA trans-—

missions is evident on many of the traces.

Amplitude information for the entire duration of
both the daytime and nighttime flights is shown in Fig. 9.54. The time
scale on these records is highly compressed from that in Fig. 9.53, and
provides visual integration. The amplitude scale shown in db below
1 gamma rms is appropriate for an equivalent single-frequency signal at
5 kc. Time elapsed following launch is shown along the lower edge of
each record and reads from right to left. Rocket height is indicated
along the upper edge of each of the records. The periodic (every
16 .9 sec on Aerobee 4.58 UI and every 44.3 sec on Aerobee 4.59 Ul) large-
amplitude signal evident on the records is a calibration signal injected
at the antenna terminals., The on-off nature of the NAA transmissions
results in a very wide trace on the nighttime record, The upper edge of
the trace corresponds to NAA amplitude and the lower edge to background

noise level.

9.,2,2.2.2 Aerobee 4.58 Ul

The following discussion is related to the upper
record in Fig, 9,54, The first 54 sec of amplitude data on Aerobee 4,58 Ul
are controlled by the two noise bands apparently generated during the
powered portion of the flight (as discussed previously with regard to
the spectral data). The rocket-generated noise reaches a level of about
45 db below 1 gamma rms (equivalent single-frequency level), which is
some 15 db above the background. The average noise level drops abruptly
following burn-out, but returns to its earlier level within 14 sec due

to the presence of a sweeping noise band, also discussed earlier, The
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sweeping band ceases abruptly and the average signal level drops to its
lowest value, about 60 db below 1 gamma rms, which appears to be set hy

telemetry interference within the rocket,

As the rocket ascends, the average noise level in-
creases smoothly about 10 db to a peak of 50 db below 1 gamma rms at
the top of the trajectory, then decreases smoothly again during descent.
The hiss band above 100 km and the spin-modulated 6 .5-to-8-kc bands near
the top of the path both contribute to the increase in average noise with

height.

A number of individual signals produce recognizable
amplitude deflections. Included in this category are all but one or two
whistler-mode signals. Some of these sources raise the signal level as
high as 45 db below 1 gamma rms, The spin-modulated noise bands between

6.5 and 8 kc also produce characteristic amplitude deflections.,

9,2.2.2.3 Aerobee 4,59 Ul

The following discussion is related to the lower
record in Fig. 9.54. As was the case on the daytime flight, the nighttime
amplitude data are controlled until burn-out by rocket-generated noise,
which reached a level in the neighborhood of 40 db below 1 gamma. Follow-
ing burn-out, the most prominent feature of the data is the contribution
of the keyed NAA transmissions on 14.7 kc. The VCO record provides a
complete history of the amplitude of this fixed-frequency signal through-
out the flight. The NAA amplitude decreases as height increases above
60 km to a minimum near 100 km, increases between 100 and 180 km, and
then decreases again up to peak altitude. Signals of natural origin are
evident between pulses of the keyed transmissions, The average background
noise increases gradually from a low of about 60 db below 1 gamma rms
following burn-out to a level of about 57 db below 1 gamma rms near peak
altitude. This total change is less than on the daytime flight. The
packground level then decreases during descent until break-up. The mini-
mum average noise level on Aerobee 4.59 Ul appears to be determined more

by natural noise than by telemetry interference within the rocket,
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Many impulsive sferic signals produce recognizahle
deflections on Aerobee 4,59 Ul amplitude records, Fluctuation of the
night signal level is much greater than the day level because of the
greater abundance of these sources., Nearly all of the whistlers on the
night flight also produce recognizable deflections, These latter sources
produce signal levels as high as 40 to 30 db below 1 gamma (equivalent
single-frequency signal). The traces in Fig. 9.53 show both sferics and

whistlers.

9.2.2.3 Results Obtained by Stanford University

The analysis of Aerobee broadband data at Stanford
University was oriented mainly toward the spectral data, and was concerned
primarily with discrete events associated with whistler-mode propagation,
Because of the low rate of whistler-mode activity, the data for the
3 April daytime flight were given only minor consideration. In contrast,
the 9 July nighttime records revealed many examples of a new whistler-
mode phenomenon, a low-dispersion type of whistler [Carpenter et al,
(1964)]. Most previously reported whistlers support a propagation model
in which whistler-mode energy penetrates the ionosphere and propagates
~in the right-hand-circular mode along approximately field aligned paths
to the opposite hemisphere. Travel times from one hemisphere to the
other are typically of the order of 1 sec. Aboard Aerobee 4,59 UI,

however, whistlers with travel times of the order of 0.1 sec were found.

The first example of a low-dispersion whistler was re-
ported by Barrington and Belrose (1963) from their observation of Alouette
records, However, not until the Aerobee tests was the widespread and
frequent occurrence of this phenomenon appreciated, nor were its character-
istics determined. Investigation of their respective records led both |
nggest that upgoing whistler enefgy is reflected at
an altitude of roughly 1000 km, and that it may suffer multiple reflec-
tions back and forth between this altitﬁde and the lower ionosphere or
ground, as illustrated in Fig. 9.55. Since the ray paths are confined
below the protonosphere, the region where hydrogen ions begin to pre-
dominate, Carpenter et al. [1964] and Smith [1964] labeled these whistlers

subprotonospheric or "SP" whistlers.
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The first whistler event
observed during the Aerobee 4.59 Ul
ascent did not occur until an alti-

tude of 108 km, the approximate posi-

tion of the sporadic-E layer., The

rate of whistler occurrence remained

FIG. 9.55 RAY PATH OF .
SUBPROTONOSPHERIC nearly constant at 15 per minute

WHISTLER during ascent to the peak altitude of

204 km, with a single burst of rela-
tively high activity in the vicinity of 200 km. Three events are identi-
fied on the top record in Fig, 9,52 for a 10-sec period when the rocket
was near the top of its trajectory: a strong SP whistler near 223 sec,
an SP whistler plus conventional long whistler from the same sferic

shortly after 224 sec, and a very faint SP whistler near 232 sec,.

The last whistler event during descent was observed at
102 km, just below the double-peaked sporadic-E layer. Three SP whistler
events are identified on the third record of Fig. 9.52 for a period when
the rocket was descending near 110-100 km, Of the 75 whistlers observed
aboard the Aerobee, all but one or two exhibited at least one SP component,
It is significant to note that during the entire Aerobee 4.59 UL flight,
not a single detectable whistler was observed at the Greenbank ground
station (see, for example, records 2 and 4 of Fig. 9.52), This lack of
whistler activity on the ground is confirmed by the rocket data itself

at subionospheric heights,

Carpenter et al. (1964) have summarized the results of
their detailed measurements on 11 of the best defined Aerobee 4.59 Ul
whistlers. Subscripts on the dispersion constant refer to the number of

hops of whistler-mode travel (e.g., D_ for the second hop dispersion).

2
(1) Within the experimental error of about +5 percent,
the dispersion D = tfl/z of the SP components
is constant as a function of frequency. This
is the expected dispersion law for propagation
in the right-handed circularly polarized whistler-

mode when wave frequency is well below the
electron plasma frequency and gyrofrequency and
when the wave normal is within a relatively
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large range of angles with the geomagnetic
field. Most of the dispersion measurements
were made in the frequency range between
about 1.5 and 4 kc. Below 1.5 kc, there

is some indication of an increase in dis-
persion with decreasing frequency, but

this point is not yet well established.

(2) For 11 cases, the value of D2 ranged from
4,4 secl/2 to 5.4 secl/2, (The value of
Dy for an event was determined by averaging
the results of measurements at several fre-
Quencies.) The scatter of +10 percent
around Dy, = 4.9 secl/2 jg probably attribut-
able to experimental uncertainty in iden-
tifying the leading edge of a trace or
impulse,

(3) There is no apparent systematic variation
in Dy throughout the flight. The electron-
density profile obtained at the time of the
shot shows that electron density increased
quite rapidly only above 175 km. The
systematic dispersion variations that might
be present under these conditions are approx-
imately of the order of some of the experimental
uncertainties involved.

(4) The travel time at a given frequency between
the second and fourth hops is approximately
the same as that between the zero and second
hops. The ratio of Dy to Dy, averaged for
each event, remained within %10 percent of
2.0 throughout the flight., This uncertainty
is approximately the same as that associated
with experimental error,

(5) The upper cutoff frequency of the second-hop,
or first-dispersed SP component, is about
6.5 ke, Most values are in the range 6-8 kc.
The upper cutoff frequency appeared to be
somewhat higher near peak altitude. The
cutoff of the fourth-hop SP component is
about 5.5 ke, and the range throughout the
fiight is roughly 5-6 kc.

(6) The lower cutoff frequencies of both the
second-hop and fourth-hop SP components
lie between apout vUU and Y50 cps throughout
the flight.

Smith (1964) has proposed a theoretical model for the

propagation of SP whistlers that seems capable of satisfying the observed
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experimental data, It is suggested that since reflection near 1000 km N

due to discontinuity in refractive index is unlikely, energy follows a ’ >
refracted path that is capable of returning toward earth when horizontal

gradients of refractive index are present in the ionosphere. Whistler-

mode propagation transverse to the magnetic field, normally not feasible,

is possible at these altitudes due to the presence of ions. Following

reflection of the down-coming energy from the bottom of the ionosphere

or ground, the SP whistler may become trapped for several hops between

these two reflection levels,

9.3 Impedance Probe

9.3.1 Instrumentation

The impedance probe was designed to measure the complex impe-
dance of an electric dipole, which consisted of two copper strips 1 inch
wide and 42 inches long mounted vertically 180 degrees apart on the

nosecone. The measurements were made at two frequencies-~1.54 and 120 kc. .

A low, known level of oscillator signal current was injected
into the antenna terminals and the phase and amplitude of the resulting
voltage were measured. The oscillator voltage level on the antenna ter-
minals was approximately 10 mv for free space antenna impedance. The
relationship between the measured voltage and the antenna impedance was
determined by performing a detailed calibration by connecting various
known complex impedances to the probe input terminals before launch. The
calibration circuit consisted of a parallel resistance and capacitance.

A one-point calibration was performed periodically during the flight by
substituting a known impedance for the antenna. The calibration curves
for the low-frequency impedance measurement are shown in Fig. 9.56. The
curves are shown only for values of impedance which are in the vicinity
of the impedances measured in flight. At the high frequency the measured
antenna impedance appeared to be purely capacitive with no measurable
change in phase angle; therefore, the calibration curves degenerate to a
single curve as shown in Fig. 9.57. A conservative estimate of the
measurement accuracy is represented by an error of 0,05 cm on the ampli-

tude and phase scales, The resolution was considerably better,
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The two oscillator signals were injected simultaneously into

the antenna, and
separate the two
turn of 1540 cps
then recorded on
proximately 17.5
of approximately

the beginning of

9.3.2

narrow~band filters at each frequency were used to
signals. After separation, measurements were made in
amplitude and phase and 120 kc amplitude and phase and
a single data channel. Each measurement required ap-
msec, resulting in a sampling rate for each measurement
14,3 samples per second. A zero level was applied at

each 1540-cps amplitude data point for identification.

Data and Discussion

Data obtained on the impedance probe on Aerobee 4.59 Ul are shown

in Figs. 9.58 through 9.63. The impedance data are presented in the form

of a parallel equivalent circuit of capacitance and conductance. No impedance

data were obtained on Aerobee 4.58 UL, These data are strictly terminal .

impedances and conclusions regarding the characteristics of the ion sheath
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and of the surrounding plasma must be obtained by solving the multiple
boundary problem, which consists of the rocket, the antenna, the ion sheath,
and the undisturbed plasma. The geometry of the antenna does not lend it-
self to easy analytical solution; however, an approximate model, assuming
that the antenna consisted of two parallel rods on a cylindrical rocket,
that the ion sheath had sharp (step function) boundaries, and that the plasma
was highly conducting, was solved to determine the change in antenna capaci-
tance as a function of ion sheath thickness, This sheath thickness can then
be compared with the thickness calculated from the electron density and
electron temperature obtained by the phase receiver and conductance

probe measurements, This comparison wés made at about 200-km altitude

with reasonable agreement; however, due to the simplified antenna model
assumed, nothing can be said about the real (lossy) part of the antenna

impedance,
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Several characteristics of the data in Figs. 9.58 through 9 .60
should be noted. There are significant changes in both capacitance and
conductance in two regions; in a sporadic-E ionized layer at 110 km,
and at altitudes above approximately 160 km, The conductance measurement
was more sensitive to low electron densities; significant chaunges in
conductance occur at electron densities of = 1000/cm3 (compare with
Fig. 9.71, electron density profile). Above 160 km, the antenna capacitance
and conductance increased essentially monotonically to a maximum at the
peak of the flight, indicating that the electron density is a smoothly
varying function of altitude in this region; however, in the sporadic-E
region, the rate of change with altitude was very fast. The level of
ionization in the sporadic-E layer at 110 km exceeded that at 200 km,

The detailed structure of the sporadic-E layer is shown in Figs., 9.61
and 9.62; note that the layer(s) may be as thin as 1 km, Note also that
during ascent there is a single layer but that during descent there are
two distinct layers. This is probably a spatial variation rather than

a temporal one (the ascent penetration of the layer was approximately
73 km away from the descent penetration); however, this cannot be

verified from the data.

Note that the low-frequency capacitance (Fig. 9.59) changed
appreciably more than did the high-frequency capacitance (Fig. 9.60).
This may be due to the smooth transition from ion sheath to undisturbed
plasma rather than a step transition; at low frequencies the ion sheath
appears thinner or, saying it another way, the plasma appears to be a
conductor closer to the rocket surface. This frequency dependence of
the impedance could be used to determine the sheath profile; however,

this was not done in this case because of the complex antenna geometry.

It is not likely that the high conductance reading (Fig. 9.58)
at low altitudes is an ionospheric effect. A probable explanation is
that the nosecone was contaminated with absorbed salt vapor from the
nearby ocean (or other contaminants); this evaporated gradually
explaining the slowly decreasing conductance which eventually went to

zero on the down leg of the flight,
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Variation of antenna impedance with rocket roll is shown in
Fig. 9.63. Since the rocket was very nearly vertical (79 degrees at the
time the data for Fig. 9.63 were obtained), the electric antenna dipole
moment was very nearly horizontal. The rocket velocity and earth mag-
netic field horizontal component directions are shown with arrows.
Since the maxima of capacitance and conductance occur very nearly in
the velocity direction and the minima occur very nearly in the magnetic
field direction, it is not possible to determine to what extent the cause
is due to either the velocity or the magnetic field. The velocity may
distort the ion sheath since the rocket horizontal velocity is significant
compared to the ion thermal velocities, and the presence of the magnetic
field of course makes the plasma anisotropic. A more detailed analysis
of the data might separate the velocity and magnetic variation of im-
pedance; however, this requires additional data scaling, which was not

undertaken at this time.

Future impedance measurements should be made with an antenna
having geometry that lends itself more easily to theoretical analysis
(simple dipole), and the impedance function of bias on the antenna

should be investigated.

9.4 NSS Receivers

9.4.1 Instrumentation

Several field components of the 22.3-kc transmissions from
U.S. Navy Station NSS at Annapolis, Md., were measured during both

flights for two reasons.

First, the details of VLF propagation through the D and E
regions are being investigated as one of the primary objectives of this
project. The availability of a high-powered transmitter near the firing
range afforded an opportunity to observe the fine structure of fields
in the absorbing, reflecting, and refracting regions of the lower iono-
sphere without danger of contamination by background noise. This effort
was particularly successful as a result of the continuous transmissions

provided by the Navy for both flights,
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Second, the characteristics of the plasma--particularly clec-
tron deunsity--can be determined from the propagation effects. This in-
formation is needed for a complete analysis of other experiments on the

same rockets, as well as for its own value.

In order to determine the direction of wave propagation within
the magnetoionic medium, where only a circularly-polarized wave can
propagate, it is sufficient to measure the orientation of the plane con-
taining the wave's magnetic field. This could be done with a single
loop antenna on a spinning vehicle, measuring the wave amplitude normal
to the spin axis as a function of spin angle. This would presuppose
stability of the wave normal for one-half revolution, or as much as
one-half second in this case., Since the rocket would travel about 2 km
in a second at D- or E-region altitudes, where the wavelength would be a
few km, it did not seem advisable to presume this stability. A second
loop antenna to measure the wave's magnetic field in the direction of
the rocket axis (approximately vertical) provided a means to observe
rapid changes in the wave-normal angle, as well as to measure the component
of magnetic field that would never have been sampled otherwise. To com-
plete the determination of wave structure in the plasma, some knowledge
of the electric fields was required, Since the rocket axis was to be
close to the earth's magnetic field direction, the axial electric field
component must be small, The remaining transverse components were sam-
pled by the rotating transverse (essentially horizontal) dipole formed
by the "plate' antenna strips used also by the impedance probe (see
Sec, 5)., Due to the difficulties of calculating the effects of the ion
sheath and the capacitance to the internal structure, the electric field
data were calibrated after the flight by matching the magnetic field
amplitudes, using the refractive index calculated from the Doppler

measurements,

Since one of the objectives of this experiment was the measure-
ment of electron density by Doppler shift, it was necessary to determine
the received frequency accurately with respect to the transmitted fre-
quency. This was accomplished by comparing the phase of the signal

on each antenna with a crystal-oscillator reference carried on the
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rocket, and simultaneously recording the phase difference between this

reference and the NSS signal received on the ground.

The dynamic range of amplitude measurement was also a critical
question, since the attenuation due to absorption and reflection could
only be estimated roughly from previous theoretical and experimental
work. In view of the wide range of possible field strength, it was
decided that the precision of measurement was less important than assur-
ance that the level would not fall below the threshold of detection.

The use of log compression, similar to that of the sweeping receivers

(Sec, 9.1.1), allowed a 90~db range of field strength to be measured within
about 1 db without range switching. The calculated maximum fields were

10 to 20 db below receiver saturation levels, leaving a useful range

of 70 to 80 db, which proved to be adequate for continuous reception on

all antennas throughout both daytime and nighttime flights,

For resolution of the expected wave components in the reflec-
tion region and below, amplitude changes that are faster than the spin
rate would have to be observable, to follow phase reversals. Rather
than load the telemetry system with separate subcarriers for each field
measurement, an electronically-switched sampled-data receiver was used,
which also avoided the problem of different time delay and frequency
response in a set of IRIG channels., The receiving systems flown, shown
in block form in Figs. 4.1 and 4.2, employed a 22.3-kc crystal filter in
the preamplifier of each of the three antennas sampled., These filters,
with a 3-db bandwidth of 20 cps, provided all the selectivity needed.
Their outputs, and a calibration voltage, were sampled sequentially by
the switching matrix for about 9 msec each on Aerobee 4,58 UL (28 frames
per second) and 18 msec each (14 frames per second) on Aerobee 4.59 Ul.
The switching matrix output was log-compressed, then both amplitude and
phase were measured., The phase reference was the (divided by three)

66 .9-kc crystal oscillator, which was telemetered as the carrier for the
vestigial-sideband "'broadband" VLF spectrum (Sec, 9.2.1). In the rocket,
as on the ground, the 66.9 kc was divided to 22.3 kc by a simple R-C

1" 1"

locked oscillator, and used to set a flip-flop used as a linear phase

detector. The flip-flop was ''reset” by the signal, and the filtered
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. tollector current of one transistor was the output. The duty cycle,
and therefore output voltage, was then proportional to the signal-to-
refercnce phase difference up to one cycle, repeating each cycle. The
phase and amplitude detectors were then commutated to the telemetry
channel, so the telemetered signal consisted of eight-segment frames
containing a phase sample and an amplitude sample from each of the three
antennas and the reference., Figures 7.1 and 7.2 show samples of telem-
etry records taken during both flights, The lines connecting samples

of each field component have been added to facilitate data reduction.

9.4.2 Doppler Measurements

9.4.2,1 Procedure

The telemetered phase of the 22,3-kc wave received at
the rocket, the telemetered phase reference, the 22 .3-kc wave received
at the ground telemetry station, and the known rocket trajectory were
used to calculate electron density profiles., A simplified form of the
method used is illustrated in Fig. 9.64, which represents a VLI trans-
mitter on the ground radiating
waves at a frequency Ft’ which
are refracted into the iono-
sphere with a phase velocity
much lower than in free space.

They are received in the moving

rocket with a large Doppler

— FT .
A shift due to the reduced wave-
“ DATA n length in the plasma, which
VLF TRANSMITTER RECORDER

is a function of electron den-

RA-374%3-3

sity, This Doppler-shifted

ps)
m

<
"0

FIG. 9.64 VLF DOPPLE ERIMENT VLF frequency Fr then modulates
d

(Simplified Bloc

r.
<
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Q
8
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3
=

a transmitter, operating at a

frequency far above the maximum
plasma frequency, which telemeters Fr to the ground. At the telemetry
receiving station, a TRF receiver is tuned to Ft’ and provides the fre-
quency originally transmitted, The frequency difference between Ft and

Fr measured on the ground is the rate of change of the total phase path
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length, including telemetry Doppler shift, If the trajectory is known,
the VLF phase velocity in the direction of motion of the rocket can be
calculated. If the wave-normal direction is known, the local iundex of
refraction p, and consequently the local electron density N, can be

determined.

1f horizontal gradients in electron density are assumed
to be negligible, and the refractive index in the ionosphere is high,
the approximate wave-normal direction is easily calculable from the
geometry, and does not have to be measured in flight. Referring to
Fig., 9.65, B is the angle between the incident wave direction and the
vertical. At a point in the ionosphere where the index of refraction

is p, the wave-normal angle with the vertical, 82, is given by Snell's law
b sin Bz = sin B . (9.4.1)
Since the refracted wave will remain in the vertical plane containing

the incident direction, the Doppler-shifted frequeucy observed at the

rocket will be

O]

F = Ft[l—Lv—CM]+F , (9.4.2)

o
~<

RA-3749-I

FIG. 9.65 ILLUSTRATION OF GEOMETRY FOR DOPPLER CALCULATIONS
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where

V = rocket velocity
= angle between V and wave normal
¢ = <Zfree-space velocity of light

FS = rocket spin rate.

The spin rate enters due to the observation of a circularly polarized
wave by a rotating antenna, FS is positive if the rocket rotation is
opposite to the polarization rotation of the propagating wave, as in
this case, and is zero when applied to an antenna sensitive to a wave
component in the direction of the rocket axis, such as the "horizontal'
loop in this experiment, These polarization effects are clearly demon-

strated in the data from these experiments,

Since
Vecos | = VV cos Bz + Vh sin BZ cos
1/2
sin” P sin B
= Vv 1 - > + Vh cos ¢ , (9.4.3)
n
where
Vv = vertical velocity component
Vh = horizontal velocity component
@ = angle between horizontal projection of
wave normal and Vh’
Eq, (9.4.2) can be written as
r A2 1/2 v
F = Fi1-—(p° in”B ) 2 sin s
, = tl — \n sin ) - = sin B cos wJ+ F_o.
(9.4.4)

In this experiment, the received frequency Fr was not telemetered directly,
but its phase was measured with respect to a reference frequency Fa’
nominally equal to Ft’ carried on the rocket, The phase difference,

whose slope is the frequency difference Fr - F and the reference

a?
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frequency 3Fa were telemetered. On the ground they were received Doppler—“
shifted by a factor (1 - Vr/c) due to the rocket's radial velocity Vr

from the telemetry station at the launcher. The received reference fre-
quency was divided by three to Fa a1 - Vr/c), and compared with the VLF
ground wave at F . The resultant "ground reference" frequency Fg was

recorded on the telemetry chart, where

A"
I
Fg = Ft - Fa<l - -c—) (9.4.5)

and the data chunncls on the same chart contained the value of Fb for

each antenna on ihe rocket, where

\'
r
Fb (Fr - Fa)( 1 - = ) . (9.4.6)

In the data-reduction process, the difference frequency

Fd was calculated, where

Ft 2 2 Vr Vr
= { FS - [VV <p - sin” B > + Vh sin P cos m] }( 1 - z—) - Ft i

(9.4.7)

Since Vr/c < 10_5 in this case, (1 - Vr/c), which modifies only the
small difference frequency in brackets, can be considered 1 without affect-
ing the resultant accuracy, Then

F

1/2
t 2 . 2
Fd Az FS -3 [V& (p - sin B>

+ Vh sin B cos @ + Vr ] . (9.4.8)

Letting C/Ft = )\, the free-space VLF wavelength (13.4 km in this case),

and solving for pz,

2
W= sin2 B + [

. 2

7\(Fd - Fs) +V, sin B cos ¢ + Vr]

7 .
v

(9.4.9)
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The angle O between the wave-normal and the carth's mag-—
netic field at this point in the ionosphere can now be calculated (see

Fig. 9.6.5) from

cos O = sin Bz cos & cos v + cos 62 sin &
1 . 2 . 2 .
= E sin B cos 8§ cos v + (W - sin” B) sin & , (9.4.10)
where
& = magnetic field dip angle from horizontal

v = angle between horizontal projections of
magnetic field and wave direction,.
With @ and © known, the electron density N can now be
calculated from the '"quasi-longitudinal' approximation to the Appleton-

Hartree refractive index equation,

2 X
m - 1__——__1-Ycose , (9.4.11)
where
2
X = 41INq
- 2
€mw
= W
Y h/w
d = charge of an electron
€ = permittivity of free space
m = mass of an electron
w = 2nFt, the radian wave-frequency
wh = electron gyrofrequency.
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Therefore, -

2 w

Lem ol ud (1-—h cos e) 9.4.12)
2 w
4mq

where | is obtained from Eq, (9.4.9) and @ from Eq. (9.4.10).

In applying this method, some approximate wave-normal
path must be assumed in order to determine the initial angle of inci-
dence, B. For these experiments, the wave direction was taken to be
line-of-sight to a given altitude ho’ then vertically up to the rocket,
to avoid iteration or involved path calculations, The boundary altitude
hO was set at 75 km for daytime and 90 km for nighttime, but neither
this choice nor the assumption of vertical propagation through the iono-
sphere, rather than calculation of the true path, would have a large
effect on the result, since P was greater than 60 degrees in any case.
The use of the "QL" approximation to the refractive index equation is
also justified, not only by the fact that this expression is valid even
for large values of €, but by the particular geometry in this case which
resulted in the refracted wave normal coming close to the magnetic field

direction.

It should be noted that this method of electron density
measurement is particularly suited for operations in remote areas, since
VLF propagates with such low loss that transmissions are available
everywhere on earth. Relatively simple equipment is required, both in
the rocket and on the ground, and use of a distant source eliminates
the problem of estimating the initial angle of incidence, Furthermore,
accuracies of tens of percent or better should be obtainable for elec-
tron densities above 103/cm3 through both the bottom and top sides of
the ionosphere. While the results of this experiment justify the sim-
plifying assumption of Snell's law for daytime bottomside wave-normal
determination, at night and above some as yet undetermined altitude in

daytime the measured wave-normal directions will have to be used.
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9.4.,2.2 Daytime Electron Density Profliles

In order to calculate electron density profiles by the
method outlined in Sec. 9.4.2.1, the records were first scaled to detor-
mine the phase measured in the rocket, and the phase measured on the
ground, The difference of these measurements minus the phase delay due
to telemetry propagation has been plotted as a function of time and
altitude, shown in Fig. 9.66. For reference, phase delay which should
have been observed if the entire path were free space with a refractive
index of 1 is shown on the same curve, The VLF phase delay measured
on both the vertical loop and the horizontal loop are shown in this
figure. Since the vertical loop is sensitive to the field transverse to
the rocket axis, the frequency observed in this channel is the sum of
the right-handed rocket spin rate and the left-handed polarization rota-
tion. The measured rocket spin has been subtracted in preparing the
phase delay data, The phase observed on the horizontal loop, which
is sensitive to the field component in the direction of the rocket's
axis, is independent of rocket spin and shows excellent agreement
with the corrected phase from the vertical loop except below 90-km
altitude on descent, which is where the rocket flipped over on re-entry,
The phase observed on the horizontal electric antenna was essentially
identical to the one observed on the vertical loop, and has not been used
directly in this analysis, At some points in the flight, particularly in
the reflecting region from 70 to 90 km, the phase patterns were ambiguous
and continuity could be established only by comparing all three components.,
One unexplained feature of the measured phase that should be noted here
is an advance of about one cycle with respect to the calculated free-
space phase, which occurred well below the reflecting region during
ascent. This advance was observed between about 20 and 40 km on all
components of the wave, which eiiminates the possikility that it was an
error in correcting the spin frequency.

Refractive index was calculated by thc mcthod outlined in
Sec. 9.,4.2.1 and is shown in Fig. 9.67. The points used are derived

from Doppler frequency measurements made over periods of one spin cycle,

or about one-third of a second. The velocities used were obtained from
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an analytical expression for the trajectory to smooth the radar position
data. The initial angle of incidence data were calculated as a function
of rocket position, assuming the reflecting boundary to be at an altitude
of 75 km. Most of the phase data used were from the vertical loop an-
tenna, except in the reflecting regions, where the horizontal data
appeared more stable. The apparent fluctuations in refractive index
below 87 km are due to the phase interference of the reflected and evanes-
cent waves with the propagating waves. On the other hand, the variations
in the vicinity of 110 km are probably real, since the variations occur
over a distance large compared to the wave length in the medium, which

is about 0.7 km., Near apogee, the calculated refractive index is not

reliable, since the vertical velocity goes through zero.

Electron density profiles derived from these data are
shown in Fig. 9.68, along with the electron density versus true height
derived from ionograms taken at Wallops Island during the flight. The
maximum F-region density occurred at an altitude of 225 km, just below
the rocket apogee. Although the ascent and descent profiles above 90 km
agree to within about 10 percent, there is a consistent discrepancy of
about 12 percent between the rocket and ionosonde data above 110 km,

This difference is considerably larger than would be expected from errors
in scaling and calculation, and may be evidence of small-scale irregular-
ities in electron density. The ionosonde will obtain reflections from
the maximum density at a given range within its area of illumination,
while the propagation experiment responds to the local value. It should
be noted that the maximum obtained by the rocket experiment agrees almost

exactly with the ionogram,

Another region of disagreement between the propagation
experiment and the ionogram is below 100 km, where the rocket shows a
similar profile but about 3 km below the ionogram. It has been pointed
out, however, that the program for calculating true height from the iono-
gram neglects the electron content below the lowest scalable reflection.
An estimate of the delay due to the profile measured by the rocket below
that point indicates that the ionogram should be lowered by about 4 km

at its lowest frequency, bringing it into excellent agreement,
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As in the refractive index curves, the fluctuations below
87 km are due to the interference of transmitted and reflected waves,
In this region, the polarization changes from linear to left-handed cir-
cular, as the evanescent wave due to the reflection of the right-handed
mode dies out. The star at 72 km indicates the best estimation of the
reflection height of the right-handed mode on ascent, from both phase
and amplitude data, and the corresponding electron density was calculated
from the full Appleton-Hartree expression including collisions. Below
this altitude, about 45 degrees of rotation of the linear polarization
was observed, which is presumed to be simply Faraday rotation, although
the presence of reflections have precluded any quantitative conclusions

until a full-wave analysis can be undertaken,

Another feature worthy of note is the agreement in fine
structure between the ascent and descent profiles above about 180 km,
To indicate the region of correlation, a scale has been added to Fig. 9.68
which indicates the horizontal displacement between ascent and descent
at a given altitude., At the higher altitudes, similar fluctuations are

apparent over a distance of about 40 km,

9.4.2,3 Nighttime Electron Density Profiles

Records from the nighttime flight, Aerobee 4.59 UI, were
scaled and the data processed by the same methods described above for
the daytime flight, The result in phase delay is shown plotted in
Fig. 9.69 for the vertical and horizontal loops, and the calculated value
for a free-space path. Unlike the daytime flight, an extra delay rather
than an advance in phase with respect to the free-space path was observed
below the reflecting region. Another distinct difference was the pene-
tration of dense sporadic-E clouds on both ascent and descent, and the
relatively low electron densities observed on the remainder of the flight
due to the 205-km apogee attained instead of the expected 230. As a
result, there were several regions, particularly just above and below the
sporadic-E, in which it was very difficult to determine phase unambiguously.
It is apparent from the phase plot that two cycles have been lost some-
where, since the cumulative phase fails to return to the free space value

on descent.
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In calculating the refractive index, shown in Fig, 9.70,
it was necessary not only to switch back and forth between vertical and
horizontal loop data several times, but also to use longer sample
periods to determine Doppler frequency in the regions of severe phase
interference, Samples of one spin period were used in the sporadic-E
clouds, but over most of the rest of the flight samples of two to eight
spin periods, or as much as 3 seconds, were used., As a result, only the
data taken above 170 km on ascent are considered reliable. Nevertheless,
the electron deusity profiles were calculated, and are probably within
a factor of 2, excepting the obvious wild fluctuations, as shown in
Fig. 9.71. The Wallops Island ionogram taken during the flight does not
overlap the rocket data, nor would it appear to extrapolate to the same
curve, However, the correction for the neglected electron content below
the lowest point scaled must be considered as in the daytime flight,
Although this calculation has not been carried out, because of the greater
uncertainty in electron density and the more complicated profiles in-
volved, a reduction of 10 km in the true height of the lowest point would

provide excellent agreement,

One of the difficulties in devising a means to analyze
data of this type is first determining whether the phase interference is
due to reflections or multipath propagation. The magnitude of this
task is beyond the hand-scaling methods employed in this experiment., It
could be accomplished by running a full-wave solution on a computer, in
which case the entire experiment should be designed for machine handling
of data, The phase and amplitude of all six components of the wave could

then be measured to minimize ambiguities.

9.4,3 Amplitude Measurements

During both flights, the amplitude of uninterrupted 22.3-kc
transmissions from station NSS were measured on the vertical and hori-
zontal loops, and on the plate antenna, The fields actually measured
by the vertical loop and plate antennas were the magnetic and electric
fields, respectively, transverse to the spin axis of the rocket, The

horizontal loop measured the magnetic field component in the direction
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-

of the rocket axis. (Refer to Sec. 8 for spin axis direction,) The log-
compressed amplitude data were scaled from the telemetry records with

an estimated accuracy of =1 db within the 90-db dynamic range of the
instrument, as described in Sec. 9.4.1., Magnetic field strengths will
be given here in db with respect to 1 gamma rms, where the number of

db is 20 log10 of the ratio, and 1 gamma is 10—5 gauss, In a magneto-
ionic plasma, the magnetic field strength H is presumed to be always
equal to the flux density B divided by the permeability of free space.
However, the ratio of electric to magnetic field strength, E/H, equals m,
the local wave impedance. This impedance is the free-space impedance
divided by the local refractive index, which is a function of the medium.
As an example, an infinite plane wave propagating in free space with a
magnetic flux density of 1 gamma would have an electric field strength of

-4
0.30 v/m, and a magnetic field strength of 7.93 X 10 a/m,

In these experiments, the measurement of electric field strength
was only partially successful during the daytime flight, because the
plate antenna strips peeled off before burn-out. Although signals were
received on the remaining leads throughout the flight, the effective
length and orientation of this antenna can only be guessed at. During
the nighttime flight, however, the redesigned antenna stayed on and
reliable data were obtained throughout the flight, The effective length
of the nighttime antenna, defined as the ratio of terminal voltage to
field strength, was calculated from the electric to magnetic field
strength ratio as 0.094 meter which was consistent with the refractive
index measured by the Doppler method. This value of effective length
was in agreement with the value estimated from the geometry and approx-

imate measurements of the base and active capacitances of the antenna,

9.4.3.1 Daytime Results

The amplitudes measured at 22.3 kc during Aerobee 4,58 Ul
are shown in Fig, 9.72. In this figure, the magnetic flux densities
measured on the vertical and horizontal loop antennas are pilotted in
db with respect to 1 gamma rms as a function of time and altitude.

The electric field strength is shown only in relative units, since it

was not possible to calibrate the antenna after the plates stripped off.
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The curves labeled "maxima'" and "minima" on the vertical loop plot indi-
cate the maximum and minimum amplitudes during a spin cycle. The dis-
appearance of significant spin modulation between 72- and 87-km altitude
during ascent indicates the reflection of the right-hand polarized wave,
interference of the remaining evanescent wave with the propagating
left-hand mode, and refraction of the propagating mode toward the ver-
tical., This region appears quite different on descent, largely due to
the fact that the rocket flipped over at 90 km. Below about 70 km, the
expected four cycles of standing-wave pattern are observed as a result
of the interference between the direct and reflected waves. The amplitude
of this pattern indicates a reflection of about one-fourth the incident
power, This is not an unreasonable value, although no detailed analysis
has yet been made of the reflection, transmission, and absorption in
this region for comparison, It is apparent, however, that the main re-
flection is taking place in the lower part of the absorbing regionm,

which extends between 60 and 80 km,

The horizontal loop does not exhibit spin modulation, but
it is much more sensitive to the angle of the wave normal, since the
magnetic vector lies nearly in the plane of the loop. 1In spite of this,
the amplitude observed above 90 km is remarkably free of fluctuations,
as is that of the vertical loop. Below 90 km, however, the horizontal
loop exhibits large variations due to the change in direction of the wave

and of the rocket axis.

The electric field, on the other hand, shows considerably
more variation above 90 km, particularly in the region between 90 and
170, Above that it also appears undisturbed, Between 90 and 150 km,
the electric field also exhibits the expected decrease due to the in-
creage in refractive index. Above 200 km, however, the field again in-
creases, possibly due to the reduced ion sheath spacing which would in-

crease the active capacitance to the antenna and therefore increase its

effective length. The power density in the wave, which is the square
of the magnetic field strength times the local wave impedance, is shown
in Fig, 9.73. The wave impedance used is the free-space value divided

by the refractive index determined from the Doppler experiment, Below
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50 km altitude, the observed power density is close to the expected
standing wave pattern superimposed on the inverse square law of distance
from the transmitter. Between about 50 and 70 km, both absorption and
reflection are taking place. From 70 to 80 km, absorption seems to pre-
dominate, since power density drops smoothly by about 20 db on both ascent
and descent. Above about 80 km, where the refractive index exceeds 1.5,
the total attenuation at apogee is found to be about 35 db, of which at
least 20 db are due to absorption and the rest to reflection. Spreading
of the wave is expected to be negligible under these conditions. Between
120 and 200 km, the power density dips an additional 10 db during ascent.
This is thought to be due to a multipath interference rather than a change
in absorption with position of the ray path, since the wave normal

deviates considerably from its expected direction in this region, as
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explained below. The slow drop of power density after apogee is con-
sistent with the increase in distance from the transmitter to the ray
path's point of entry into the ionosphere. Before apogee, however, this
distance did not increase rapidly, and in fact may even have decreased

initially.

Although the electric field of the wave does not neces-
sarily lie in the plane of the wavefront, the magnetic field does. This
fact has been used to calculate the angle of the wave normal from the
rocket axis, which is the arctangent of the ratio of amplitudes measured
on the horizontal and vertical loops. This angle ié shown in Fig, 9.74
as a function of time and altitude., The arrow labeled "vertical" marks
the direction of vertical with respect to the principal spin axis of
the rocket, neglecting precession, If the assumptions of Sec., 9.4.2 are
correct, the wave normal angle should lie within about 6 degrees of the
vertical everywhere above 100 km, or between about 3 and 10 degrees on
this plot., The apparent deviations beyond this range are thought to be
multipath effects, either below or above the ionosphere, rather than
actual deviations of the wave normal, It should be pointed out that,
even if the observed wave normal directions are correct, the errors
introduced in the electron density calculations are not greater than
about 7 percent., It is also apparent, however, that a simple stratified
model will not be adequate for accurate calculations of the character-

istics of propagation in this region.

9.4.3.2 Nighttime Results

The 22 ,3-kc amplitudes measured at night on Aerobee
4.59 UI are shown in Fig. 9.75. Unlike the daytime data, the electric
field strength is given in db below 1 v/m rms, assuming the effective
length of the antenna is 0,094 meter as discusscd in Sec,. 9.4.3. Con-
sidering the vertical loop amplitude, where the upper and lower traces
are the maximum and minimum amnlitudes due to spin modulation, little
absorption is evident., The transition from linear to circular polariza-
tion now takes place between about 80 and 100 km, with spin modulation

reappearing between 130 and 170 km on ascent. This recurrence of spin

modulation above the sporadic E occurs in a region of low refractive
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index bounded by steep gradients, probably giving rise to numerous
reflections. On descent the picture is even more confused, since spin
modulation reappears at about 150 km and persists completely through the
E region. In spite of its density, the sporadic-E cloud exhibits little
effect on the amplitude of any component during either ascent or descent.
In general, the nighttime amplitudes fluctuate considerably more than
the daytime ones, which is alsc true of the power density, shown in

Fig., 9.76., As expected, however, the total absorpticn and reflection
loss is considerably less at night than in the day, being only about

15 db, including sporadic-E effects. The nighttime wave normal angles,
shown in Fig. 9.77, are extremely erratic but still within about 15 de-
grees of their expected values above 90 km. Below 90 kn, where the mag-
netic field is expected to bz linearly polarized and horizontal, the
angle calculated no longer represents the direction of the wave normal,.
Instead, it is the complement of the angle between the magnetic field
and the rocket axis, and should be near zero. This appears to be the
case on ascent; and descent must be discounted below 90 km since the

rocket flipped over at that altitude.

In order to determine whether the efiective length of the
electric antenna remained constant, the ratio of magnetic to electric
field strength was plotted in arbitrary units shown in Fig. 9.78. Since
this ratio is proporvional to the local refractive index, the latter as
determined by the Doppler experiment has been plotted on the same chart
on a suitable logarithmic scale. Only a few points were used to avoid
cluttering the data, but it is apparent by referring to Fig. 9.70 that
the general agreement will be good., In fact, this ratio exhibits remark-
ably little fluctuation compared to the direct amplitude measurements,
supporting the contention that these fluctuations are due to irregularities
in the medium rather than to interference oi differcnt modes. 1In the
sporadic-E region, however, this situation is reversed and the H-to-E
ratio exhibits stronger variation than the field strength measurements,
although not as strong as the refractive index calculated from phase
delay. The meaning for this is not clear, although it is probably due

to the strong reflections in the sporadic-E region.
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9.5 Conductance Probe

9.5.1 Purpose

In order to determine electron temperature and vehicle poten-
tial, a plasma probe was included in the instrumentation for the night
shot, Aerobee 4.59 Ul., The direct benefit of these data is apparent,
particularly since relatively few measurements of this type appear to

have been made at night.

A second objective was to aid in the analysis of data from the
impedance probe experiment, described in Sec. 9.3. Correlation of im-
pedance probe data with known values of electron density and temperature
and of vehicle potential are essential in developing an understanding

of the various plasma effects on low-frequency antenna impedance,

The third objective, common to all instrumentation, was to
evaluate the effectiveness of experimental technique and the performance
of equipment. These results will be used in future experiments to cor-
rect design deficiencies and to improve instrument reliability and

accuracy.

9.5.2 Instrumentation

The device flown was a form of dynamic Langmuir probe, as
described by Mlodnosky and Crawford (1964). The probe structure, shown
in Fig. 5.1, was a thin cylinder on the rocket axis extending 60 cm
beyond the normal nose tip. The base 25 cm of the probe, which was
1.25 cm in diameter, was driven as a guard at probe potential, The
remaining 35 cm of probe, 1 cm in diameter, was the active portion.
Except for a stainless steel conical tip, 2.5 cm long, the entire struc-
ture was fabricated of aluminum, with Teflon and silicone rubber for in-
ternal insulation, All electronic componeuis, exccpt the input-matching
transformer, which was in the conical base section of the probe, were
attached Lo tiie loop suppert structure or in the instrument section of
the payload, The probe itself was expected to reach a temperature

over 4OOOC.
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In operation, this device was a highly unsymmetrical Langmuir
probe, where the entire rocket body was the second electrode. Since the
ratio of the area of the rocket to that of the probe plus guard was over
400 to 1, greater than the ratio of electron-to-ion mobilities, the
rocket body could be considered to maintain a floating potential essen-
tially unaffected by the probe voltage over most of the bias range. The
probe and guard were driven with respect to the rocket body by a known
voltage, consisting of 10 mv rms at 112 cps superimposed on a slow bias
sawtooth, which swept from -1 to +1 v every 1.4 sec. These levels were
chosen to keep the ac excitation below the mean electron thermal poten-
tial. The 112-cps current flow resulting in the active probe was filtered
out with a bandwidth of about 20 cps, amplified and log compressed, and
detected. This output and the bias voltage were telemetered. Once every
minute, both channels were calibrated at six points, and the probe voltage

was then clamped to zero for 0.1 sec.

Under the conditions of the experiment, capacitive current
contributed less than 2 percent of the total, so the data output has
been considered as the log of the probe's conductance to simplify anal-
ysis. A capacitance correction would have been required at low densities
if the original design goal, a measurement threshold of 10 elec/cc, had
been met, This threshold was not achieved because of two factors, The
first problem was stray coupling of the ac injection voltage directly
into the preamplifier. Attempts to neutralize this coupling before
launch were only partially successful, largely because it was sensitive
to surrounding objects. Since time was short and the conductance probe
was a secondary experiment, it was flown without knowing how much coupling
would remain in free flight. From flight data, the theoretical threshold
has been calculated as about 200 elec/cc. However, even this sensitivity
was not realized, due to the second problem, which is the apparent lack
of sufficient conducting area on the rocket body. The reasons for this
conclusion, and its implications, are discussed in Sec. 9.5.3. It is
sufficient to note here that the threshold actually realized was about
1000 elec/cc, as determined by comparison with electron densities measured

by propagation phase delay (Sec. 9.4). By redesigning the probe coupling
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system and establishing a reliable conducting surface on the rocket,

the goal of 10 elec/cc resolution should be attainable. Further im-
provement of the technique should be possible by reducing the bias

range to obtain better time resolution, and by using coherent detection
to avoid the necessity of correcting for capacitive current. For addi-
tional sensitivity, a larger probe could be used if the excess electron
current to the entire collecting surface were dumped by an electron gun.
In fact, this last technique was considered for this shot, but appeared

to require more effort than warranted for a secondary experiment.

9.5.3 Theory of Operation

The probe used in this experiment was operated as a dynamic
probe similar to the "VLF" type by Crawford and Mlodnosky (1964), since
the measuring frequency was low enough (112 cps) that heavy ions as well
as electrons could be considered mobile. Analysis can be further sim-
plified if the ratio of length to sheath radius was sufficiently large,
for both the probe and the rocket, that both could be treated as segments
of infinite cylinders. An effective sheath radius can be calculated by
assuming a uniform ion density throughout the plasma, neutralized out-
side a sharply bounded sheath by an equivalent electron density, N.
Inside the sheath, which lies at radius R about the center of an infi-
nitely long cylindrical electrode of radius Ro, the electron density is

zero, The net charge per unit length outside radius r is then

Q(r)/L = -mNq@®% - r) 9.5.1)

where q is the (negative) charge of an electron, and the radial electric

field at r is

2
9t Ng (R )
Er(r) e2rmrrl  2¢ \r ~ /] (9.5.2)

where ¢ is the permittivity of free space. The potential V on the elec-

trode is then R

jRo Erdr

<
Il

N—[2R2£n(R/R ) - B + RZ] i 9.5.3)
4e¢ o) o
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Although the assumption of a sharply-bounded sheath is not always a good
approximation, it should be valid in cylindrical geometry if the mean
free path is large compared to the sheath radius (lm > R), the electrode
potential is larger than the thermal potential ( |qV| > KT), and the
effective sheath distance is larger than the Debye length (R - RO = Xd),
all of which are true in the calculations of Sec. 9.5.4, for an altitude
of 200 km and an electron density of 104 elec/cc, At a potential of
-0.5 v, the probe sheath radius Rp becomes 5,3 cm, and the rocket sheath
radius Rr becomes 26 cm, Comparing these dimensions with the probe
length of 35.5 cm (61 cm with guard) and the rocket length of about 8 m,
treating the electrodes as segments of infinite cylinders should not

introduce gross errors,

The total curreant to the probe and guard, assuming thermal

equilibrium of electrons and ions, can now be written as

i/2

KT 1/2 —qVp me
I +1I = =N A + A ex —_— - — o] VvV <o

1

(9.5.4)
where

is probe current,
is guard current,

is Boltzmann's constant,

H R ke

is plasma temperature,

is electron mass,

» B
(0]

is probe surface area,

>
T

is guard surface area,

<
T 0]

is probe (and guard) potential with respect to the plasma,

=

is ion mass (assumed singly ionized),

<

is an ion current factor due to the accelerating poten-
tial Vp (see Appendix A)

0 is an ion current factor due to rocket velocity
(see Appendix B),
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The function | is shown in Fig. A.1 of Appendix A, where | - 1
is plotted against p = R/RO - 1 for several values of the parameter

qV/KT. For large values of p, ¥ can be approximated by

1/2 1/2

4qV qV qV

| O = ™ = — — —_—
Yo ) ( T ) + exp(KT) erfc< KT) . (9.5.5)

A simpler expression, within 3 percent of §_, is

1/2
4qV

v, =~ (‘HKT + l) . (9.5.6)

Denoting -Nq[(KTy(znme)jl/2 by Je and <5[(me)/(mi)]1/2

tuting Eq. (9.5.6) into Eq. (9.5.4),
_qV 1/2

p 4qu
= J —=] -7 . (9.5,
Ip + Ig e(Ap + Ag) exp < KT ) '[(ﬂKT ) + 1] (9.5.7)

by T, and substi-

Similarly, the total current to the rocket is
_qu
= A —_—) - . 5.
Ir Je r{éXp< KT ) ﬂwr] © 8)
In this case, however, p is much smaller than 1, and wr reduces to
by, = 1 +p . (9.5.9)

But for small p, Eq. (9.5.3) becomes

2 2
V o~ Naq (R - R )2 = EEEQB_ (9.5.10)
~ 2¢ o - 2¢ : e

Combining,

1
_qu> 2€Vr /2
= J A —_— -
Ir er exp KT e+

\ -

(9.5.11)
NqRO
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For equilibrium, letting the probe bias voltage Vb = Vp - Vr and dividing
by J (A +A),
e p g

-q 4q 1/2
0 = exp[:ii (Vr + Vbﬁ -1 [Fﬁ? (Vr + Vb) + 1]
A ~av_ 2eV_ 1/2
+ m exp ( &T ) -Tl 1+ > . (9.5.12)
g NqR0

This equation can be solved, graphically or by other means, for Vr (and
hence Vp) as a function of Vb, the known voltage applied from probe to
rocket. Assuming that electrode geometry and rocket velocity are known,
the ion mass, plasma temperature, and slectron density must be estimated
for the first calculation. The conductance vs. bias that would be mea-
sured by the instrument under these conditions can now be calculated and

compared with actual measurements. Revised estimates can then be applied

iteratively until agreement is obtained.

The conductance G measured by the instrument is given by

GpGr
G = E—-I-—E- N (9.5.13)
P Tr
where
-1/2
dI _ -qV 2Ng 4qV /
G = —p = J. A —qexp —-—p - —— p+1 ,
P de e pi KT KT KT KT
vV <0 (9.5.14)
|Y
is the probe conductance, and
-1
dIr —q -qu e ZeVr /2
G, = v = Jel ﬁe"p( KT>’ 2 2 ’
r NqR NqgR
o (o}
v <0 (9.5.15)
r

is the rocket conductance,
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Gp and Gr are fairly easily obtained by constructing log plots
of their terms. The exponential terms then become linear, and a few
points determine the square root terms. These terms, and consequently
G, can then be evaluated at the appropriate Vp or Vr from the solution

of Ea. (9.5.12) for a given Vb'

Initial estimates of T, T, and N can be obtained directly from
the data by treating the rocket as an infinite plane conductor with
plasma on one side, and the probe as an electrically isolated segment of
the plane, Temperature would then be given by

d
G A"

ac Vo
= <—
B K aG Vp SV

£ (9.5.16)

which is proportional to the reciprocal slope of log G vs, V.. The

b
floating (or equilibrium) potential Vf is given by
KT KT , i
Vf = -_-a' inM = 2_q' An = (9.5.17)
e
Since the conductance has a maximum very close to Vp = 0, and Vp = Vf + Vb’
the initial estimate of T is
q
ﬂl = exp KTl Vb(G max) ., (9.5.18)
N can now be estimated as
(zrm_kr >/ ?
= = . .5.19
Nl GO(Vb 0) (9.5.19)

2
q Apﬂl

In the case of finite cylindrical electrodes, T, is actually the maximum

1
possible value of T, so the initial estimate could be taken somewhat

lOweI . A].SO, Eq. (9 .5.18) will hOld Only if
A‘) >> (A A ‘9 5 2 ’
A A + A J - - 0

but this is of little importance, sinte a good estimate of mass ratio

is usually available a priori.
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9.5.4 Results

In applying the procedures of Sec. 9.5.3 to the data from
Aerobee 4.59 UI, a complete analysis has been made at only one altitude
for several reasons. First, good data were obtained only in the upper
25 km of altitude because the peak altitude, 205 km, was considerably
below the predicted 230-km apogee, and the electron density below 180 km
was too low to obtain useful data except in the sporadic-E cloud, which
was traversed too quickly. Second, the lengthy calculations required
did not seem warranted until the difference between ascent and descent
data is explained. Referring to Fig. 9.79, both the peak conductance
observed during each bias sweep, Gm, and the bias voltage Vm at which
this peak occurs, become erratic and rapidly decreasing during descent.
These effects are tentatively ascribed to a turbulent wake of depleted
ion density which begins to envelop the probe at apogee, but the mech-
anism is not yet understood. To minimize the difficulties noted above,
the data sample chosen for analysis, shown in Fig. 9.80, is an average
of five sweeps centered at about 200-km altitude on ascent. During this
interval both Gm and Vm were essentially constant and large enough to
provide a well-defined G vs, Vb characteristic. Since this was near apogee
the rocket velocity was near its minimum, reducing the required drift
correction, and good electron density measurements were available from
the VLF Doppler experiment (Sec. 9.4). It should also be pointed out that
Gm appeared proportional to N measured by Doppler during ascent, but
behaved quite differently during descent. For comparison, N calculated

from the Doppler data is shown in Fig. 9.80.

In the process of determining the plasma characteristics that
would best match the probe data, it became apparent that the assumed
geometry of the probe and rocket could not result in the observed G-Vb
plot unless both T and N were far different than their assumed values.
In fact, the ion current factor T would have to be about six times the
value corresponding to atomic oxygen (16 AMU) as the ion species, which
would reduce the floating potential to about 3.5 KT/q. The maximum con-
ductance would then occur as the probe potential passed through the

3 -3
plasma potential, from which N could be calculated as about 2 X 10 cm ,
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This is a much lower value than the 1.0 X 104c:m_3 obtained from the
Doppler experiment (Sec. 9.4) at this altitude. Since the Wallops Island
ionograms extrapolate to good agreement with the Doppler results, and
since such an extremely high value of T must result, it was felt that
this interpretation of the probe results could not be accepted. The
electron density was then taken as a known value of 1 X 1O40m_3 from
the Doppler experiment, and the conducting surface area of the rocket
was treated as an unknown, since the heat treatment of the steel skin
could have resulted in a partially insulated surface. A set of param-~
eters was then found which best match the data as shown in Fig. 9.80.
The calculated conductance profile is also shown in this figure. The
minimum measurable conductance was limited by the residual capacitance
current (Sec. 9,5.2), added in phase quadrature in the calculations.

For the best fit, T = 800°K, T = 1.75 x 10”2, and A, =0.307 n?, using a
velocity factor O = 1.11 corresponding to u = 423 m/sec and @ = 65.5 de-
grees (App. B). The sheath geometry surrounding the rocket is presumed
the same whether it is in the vicinity of insulated surface or a portion
of the 4.8 percent that is conducting. The dichromate-coated magnesium

fins are assumed to be completely insulated.

The value of T| deduced is still rather high, and seems to
require one of four explanations: the ion temperature is over six times
the electron temperature, the effective ion mass is less than 1 AMU,
about 1.5 secondary electrons are emitted for each impacting ion, or a
bulk drift velocity several times the mean thermal velocity is super-
imposed on the ion distribution. The first three of these possibilities
are clearly contrary to theory and experimental evidence, leaving the
existence of an ion drift velocity on the order of kilometers per second
as the only plausible explanation, Megill and Carlton (1964), in develop-
ing the hypoihesis that electric fields excite certain auroral forms,
particularly the "midlatitude red arcs,' find drift velocities of this
order (about 2 km/sec) would accompany strong emissions, and need be
only slightly lower (possibly 1.5 km/sec) to reduce the intensity below

a detectable level.
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To estimate the drift velocity corresponding to the conductance
probe measurements, without pursuing the subject in detail, we will
adopt the "drift frame" of Megill and Carlton, which is a coordinate

system moving at the average drift velocity, v In this frame they

d’
show that the ions will tend toward a Maxwellian distribution with an

effective temperature T¥ of

m.v
% id
T = T + 3K .

(9.5.21)

Since this is different than the electron temperature T, the relative

ion current factor T must be redefined as

. 1/2
™" = T* T - meT* / T3 9.5.22)
= (‘T—) ﬂ(vd, ) = mlT 0<Vd, . ( e IS

Assuming that the rocket velocity was small compared to v and that

1/2

d.,
vd was perpendicular to the rocket axis, O can be closely approximated by

2
~ “i'd 9.5.23
o ~ 1 +—TT—KT¥ . (9.5.23)

Substituting Eqs. (9.5.23) and (9.5.21) into Eq. (9.5.22) and solving

2
for Vd’

m
2 _ _3mKT 1.2
Va T o+ 6)m, <1ne 0 1)' (2.5.24)

For T = 800°K, m, = 16 AMU, and T* = 1.75 X 10'2, we find v, = 1,86 km/sec,

d
which is near the emission threshold predicted by Megill and Carlton.

It is not known whether detectable emissions were present. This value
of V4 could be refined by iterating the entire process of matching the
observed conductance characteristic, but it is unlikely that the results

would be significantly changed. It seems more appropriate to direct
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our tuture efforts toward improving the sheath model, including the
celffects of the expected drift velocities and collisions, In view of

the initial results, it appears feasible to include probe experiments of
this type on future shots, assuming the instrumental limitations due to
lack of conducting surface and stray capacitive coupling will be removed,
Independent measurements of electron temperature and density and ion
drift velocity can then be made, and used to calibrate an impedance

probe of the type discussed in Sec. 9.3 but possibly of different geometry.
Since the impedance probe operates continuously at its floating poten-
tial, it is capable of millisecond time resolution; unlike a biased
probe, At high altitudes, where ion mass may not be known, it should be
possible to separate drift velocity and mass effects by measuring the
static electric field. Since the cylindrical geometry is very easily
eXtensible, it appears that threshold sensitivity on the order of

1 elec/cc would be practical, adequate for interplanetary space measure-

ments if photoemission contamination can be suppressed.

9.6 Temperature and Voltage Monitor

On Aerobee 4.58 Ul only, temperatures at three places on the payload
and one instrument supply voltage were measured and subcommutated onto
a single data channel. The supply voltage measurement indicated no
measurable change during flight, which was expected. The temperature at
the inside surface of the dielectric nosecone was measured in two places,
namely, at 29 and 62 inches from the nose tip. A temperature inside the
electronics package was measured to determine local heating effects.
The temperature data are shown in Fig. 9.81, Although temperature changes
were observed, the changes do not appear significant with respect to
nosecone high-~temperature performance or serious heating of electronics

inside the nosecone.
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10. SUMMARY

Two payloads on Aerobee rockets were successfully launched from
Wallops Island and a great deal of data was obtained on the numerous
experiments flown. The first shot was at noon (LMT) and the second
shot was at night two hours before midnight (LMT), providing samples
of data representing the daytime and nighttime ionosphere and signal

sources.

The daytime shot (Aerobee 4.58 UI) reached an altitude of 237 km
and the nighttime shot (Aerobee 4.59 UI) reached an altitude of 205 km.
Both flights were stable in attitude during the entire flight except
for a slight precession which began well after burnout. This precession
is attributed to a redistribution of liquid propellants remaining in the

rocket.

The sweeping receivers covering the range 0.2 to 100 kc and the
broad-band receiver (0.2 to 12.5 kc), which constituted the essential
components of the experiment flown by Stanford University and Stanford
Research Institute on the NASA EOGO satellite, performed completely
satisfactorily thus validating the engineering and scientific design of
the satellite experiment. The data obtained was a useful preview of
the data expected on EOGO and was also useful in formulating the data

display for EOGO data.

Attenuation profiles were obtained on both flights by narrow-band
sweeping receivers for signals, man-made as well as natural, in the fre-
quency ranges 0.2 to 100 kc and 1250 to 1600 kc. The following inter-
esting features were observed on Aerobee 4,58 UI:

(1) Except for rocket-associated signals, there were no

signals above receiver threshold in the range 0.2 to
1.6 kc;

(2) Above 85 km, a band of noise (hiss) appears in the
band 2 to 8 kc, which varies somewhat in frequency
range and develops some distinctive peaks as the
rocket passes through the altitudes above 85 km;
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(3) A band of noise appearing between the times of rocket
burnout and command cutoff in the frequency range 1 to
4 kc is apparently associated with the rocket exhaust
plume;

(4) Attenuation of man-made signals in the frequency
range 17.8 to 100 kc showed total attenuations through
the D layer of 20 to 50 db depending on frequency and
penetration angle; and

(5) Attenuation of signals in the 1250 to 1600 kc range
through the D layer reduced signals below receiver
threshold to indicate at least 50 db attenuation.
The broad-band receiver exhibited the same 1 to 4 kc
rocket noise and the 2 to 8 kc¢ hiss band as did the
sweeping receivers; in addition, as many as nine
whistlers were observed in the rocket while none
were observed by a nearby ground station.

The following features were observed by the sweeping receivers on
Aerobee 4.59 UI:
(1) Signals appeared above receiver threshold at all
frequencies and altitudes;

(2) Attenuation through a sporadic-E layer varied from
less than 10 db to greater than 40 db as a function
of frequency and penetration angle;

(3) Above the E layer (110 km) the signals were essentially
not attenuated to the peak of the flight (205 km);

(4) A reduction in signals in the 1.3 to 3 kc band corre-
sponding to the expected earth-ionosphere cutoff was
observed; and

(5) Reappearance of signals in the 1.3 to 3 ke band during
the time the rocket was in the sporadic-E layer and
the lower F layer indicates possible locally generated
signals.
The most prominent feature of the broad-band data on Aerobee 4,59 Ul is

the presence of about 75 whistler signals and numerous sferics. The

whistler signals included a new class called subprotonospheric.

Data on the impedance of an electric dipole were obtained on
Aerobee 4.59 UI which showed significant variations in the sporadic-E
layer and in the lower F layer (apogee). Greater change in impedance
in the E layer than at the lower F layer were observed. Changes of

capacitance from approximately 15 to 50 pf were observed at 1.54 kc
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and from approximately 15 to 23 pf at 120 kc. Change of conductance
from approximately O to 0.9 micromho was observed at 1.54 kc. The
impedance data in the sporadic-E layer showed very sharp gradients and
features of the layer which were less than 1 km in thickness. Different
structure was observed on ascent than on descent indicating horizontal
gradients. The impedance of the dipole was rocket-spin modulated, and
it is presumed that this effect is an anisotropy of the sheath or the
medium resulting from the rocket horizontal velocity or the earth's

magnetic field.

On both flights, phase and amplitude of three wave components were
measured at 22.3 kc, a frequency being transmitted continuously by
U.S. Navy Station NSS at Annapolis. The effects of absorption, mode
splitting and reflection, evanescent wave excitation, and refraction
were observed in the D and E regions. Interference between direct and
reflected waves was apparent below the reflecting region. The boundary
attenuation due to absorption and reflection was on the order of 35 db
during day, and 15 db at night. Unexplained variations of up to 10 db
in power density, and 15 degrees in wave-normal angle, were observed
during both flights. Electron density profiles were calculated from the
observed Doppler shift. The daytime ascent and descent profiles are very
similar, even to the fine structure, and in general agreement with iono-
grams. Very good results were obtained for N > 103/cm3, with useful data
down to 102. At night, the data were much more difficult to interpret,

3, 3
but consistent results were again obtained for N > 10 /cm

The night flight carried a swept-biased cylindrical plasma probe
to determine electron temperature and rocket potential. The first
derivative of the probe characteristic was measured by recording the
low-frequency conductance as a function of bias. A temperature of
800°K and potential of 0.258 were found at 200 km, as well as the
unexpected result that an ion drift velocity of nearly 2 km/sec was

required to explain the measurements.
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Appendix A

CURRENT TO AN INFINITELY LONG CYLINDER

Assume Maxwellian ion distribution outside the sheath of radius R,
and no collisions inside the sheath (large mean free path). A conducting
cylinder of radius RO is at potential V and cylindrical symmetry is
assumed. Cylindrical coordinates r, O, £ are used. An ion at the
sheath boundary has velocity components u radially inward, v axial,
and w tangential. The current that reaches the cylinder from the area

element Rd9d{ on the sheath surface is

w (u)
oo (o]
dI = RdOdLNg UF f j uf (u,v,w)dwdvdu (A.1)
u=0 v=—o -w (u)
[o]
where
3/2
m -m 2 2 2
£(u,v,w) = <2WKT> exp [EET (U + v o+ w ﬂ (A.2)

Let u and wo(u) be the initial components of velocity of an ion that
grazes the cylinder, and Vt is the 6 component of velocity at tangency.

By conservation of angular momentum,

mRw (u) = mR v . (A.3)
(o] O

By conservation of energy,

mf 2 21 .
s+ [w ] } -

|3
e+ BN

v, + qV (A.4)

195



Combining,

2
R
42 o 2 2qV
(v (w]™ = (u - —)
o 2 2 ]
22 g ™ (A.5)
o
Integrating over 6, £, and v, the current per unit length is
w (u)
1 m N w2 2
7 = ZWRNd(ZﬂKT)f J u exp [Eﬁf (u + w ﬂ dwdu , (A,6)
u, -w (u)
1 )
where
U, = 0 for accelerating potentials (qV < 0)
1/2
2qV / . .
or o for retarding potentials (qV > 0)
Next integrate over w writing w for wo(u)
o
1/2
v 1/2 (zx7) /wo 1/2
IO ex = w2 dw = 2KT f ex = w2 a|( =~ w
PI\ 2kT = \m P oKT (zxr)
o o
1/2 1/2
2KT 1 m
— kbl AL —_ w A
= < - ) 5 erf [( 2KT> 0] ( .7)
) 2
1o 21RN = 1/2 } u ex m )2 erf — 1/ w |du
7 = 4 (ZHKT) P 2x1)" KT o
(A.8)
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Integrate by parts:

f xdy = Xy - r ydx (A.9)
1/2
= erf|[=) w (A.10)
x = er 2KT o )
-m_ 2l 1/2w (A.11)
o= m P akr Yo 2KT o ’
dv = uexp | 2 W2l4 (A.12)
y = W exp|opr “ :
L
= - = p— A.
y exp | gg7 U (A.13)
o S 1/2
= EI -ex :HL-uz erf o / \ )
XY = n P SkT 2KT 9] 4
1
2
_ KT -m_ 2| . m \1/2 B 2 2qV 1/2
= w ¥P kT Y 2KT z2_ 2\ T (A.14)
xy = O qv > 0 (A.15)
KT —Riqv 1/2
Xy = ;n—— erf ) 2 qV < 0 (A.lG)
R~ - RT)KT
O
[ee)
Sy = KDz o2 fen 2] [(lyl/zw]
m Vh t & Lz T ] L2KT S ] L\2K_T/ ol
1 (A.17)
. R m \l/2
Change variables to R <2KT) LR
O
2 - 2
R R
2 2 2
u = w e + qv (A.lS)
o RZ m
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-m 2 -m 2 R 4\ - qav
2KT = 2T Vo 2 KT
o (A.19)
ool 2
R -mw 2 1/2
» 2KT <—qv> o o /R R m
- L ydx = —— exp | —=)= | exp = lad | (== w
J g KT ) R i 2KT | 2 R (2KT> o
O
R 1/2
= — [ = A.20
X R <2KT> Wo(ul) ( )
o
“ 2 o 2 t 2
- . -5 L -5 i -
Note | e ds = LJ e “ds —j e “ds = NZL[l - erf(t);
t e} [¢)
. R 2 1/2
n 2KT - 2 )i
T oyax - =KI av) _o w7 R m -9V A.21
Py o CXP ( kT, R 2z °rfe 2 _ p2 \2KT YT kT ¢ )
R
KT o -qV
= — — oxp |-~ V>0 A.22
m R C¥P < KT> q ( )
R 1/2
= %1‘_ R—O exp <%\Tl> erfc IZ{ av 5 qv < 0 (A.23)
(R® - R))KT
o
1/2
I KT -qV
LS =2 — =2 > 0
- rTRONq<2Wm exp < KT> qV (A.24)
I wr \1/2 -R”qV 1/2
7 7 21R Nq<m> — ert o
fo) (R - RO)KT
2 1/2
- -R qV
+ exp <——}€¥- erfc —Z—_qT l qv < 0 (A.25)
(R - RO)KT J
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The function § used in Sec. 9.5 is a normalized current factor

detfined as

y - I
- 1/2
KT /
2mTLR Nq | —
o 27im
“R%qV 1/2 2 1/2
= R erf -2 + exp <:g!> erfc _:E_QX_____
- 2 2 2
Ro (R - R2)KT KT (R - R )KT
O o
qv < 0 (A.26)

This function is plotted vs. p = R/RO - 1 for several values of

qV/KT in Fig. A.1.
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Appendix B

CURRENT TO A MOVING CYtINDER

Assuming a Maxwellian distribution of ion velocities, the density

function of the velocity component in one direction (x) is

2
£ (v) = ( ! )1/2 exp <— ! V") (B.1)
X 2TKT 2KT

The ion current density into both sides of a conducting plate normal to

X and moving in the x direction with velocity u is

u o

g () = N q _J; (v - wE (v) dv - { (v = WE (v,) dvy | (B.2)

where Ni is ion density
qi is ion charge
and the mean free path is assumed large compared to the dimensions of

the body.

Carrying out the integrations and normalizing to Jx (u = o) results
in
1/2
5 (u) /2r

2
\)(u) = -‘-]-}i(—gs = exp <" -g—) + X(—g) 2 \J‘ Q(x)dx -1 (B.3)

X -0

m, 1/2
i
where X = u<—>

2
and o(x) = (2ﬂ)_1/2 exp (--§—> , the normal density function,.

This form has been chosen to facilitate evaluation using the tabulated

normal probability function.
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The total ion current to the rocket can now be calculated by inte-
grating current density over the surface area, where density normal to
the direction of motion equals the density at rest. Integrating the

normalized form yields the current factor o:

1/2
o = -% I[vz(u) c052 0 + sin2 6] dA (B.4)
A

where © is the angle between the x axis (direction of motion) and the
normal to the element of area. Since the derivation of v is based on
the current to both sides of an area, a symmetrical body is required,

and the integration could be taken over only half the surface.

In this case, the rocket will be approximated by a right circular
cylinder whose axis makes an angle « with the x axis. Let ¢ be the
angle of longitude and « the colatitude of the x axis in spherical

coordinates using the rocket axis as the pole.
Then cos § = sin o cos @ (B.5)

and equation B.4 becomes

/2 1/2
g = -% I/ [1 + (vz— 1) sinza cosz¢] dep (B.6)
(0]
1/2
2 2 2 12 Y2 % 1) sin®
= =[1+ (v -1) sin"a] J - (v Sin ¢ g
2 2
o 1+(v- 1) sin«
1/2
= -% 1+ (vz-l) sinza] E (v,) (B.7)

where E is a complete elliptic integral of the second kind.
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